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ABSTRACT

Imperfections in gear tooth geometry often results from errors in the
manufacturing process or excessive material wear during operation. Such faults in the
gear tooth geometry can result in large vibrations in the transmissjon system, and, in some
cases, may lead to early failure of the gear transmission system. This report presents the
study of the effects of imperfection in gear tooth geometry on the dynamic characteristics
of a gear transmission system. The faults in the gear tooth geometry are modeled
numerically as the deviation of the tooth profile from its original involute geometry. The
changes in gear mesh stiffness due to various profile and pattern variations are evaluated
numerically. The resulting changes in the mesh stiffness are incorporated into a computer
code to simulate the dynamics of the gear transmission system. A parametric study is
performed to examine the sensitivity of gear tooth geometry imperfections on the
vibration of a gear transmission system. The parameters varies in this study aconsist of
the magnitude of the inperfection, the pattern of the profile variation, and the total
number of teeth affected. Numerical results from the dynamic simulations are examined
in both the time and the frequency domains. A Joint time-frequency analysis procedure

using the Wigner-Ville Distribution is also introduced to identify the location of the
damaged tooth from the vibration signature. Numerical simulations of the system
dyanmics with gear faults were compared to experimental results. An optimal tracker was
introduced to quantify the level of damage in the gear mesh system. Conclusions are

drawn from the results of this numerical study.
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CHAPTER 1
INTRODUCTION

Gearing, one of the most universally used machine elements, is applied in
mechanical systems of every size and description: from the tiny pinions in a watch or a
computer system to the high-speed, heavily-loaded reduction gears of an aircraft gas
turbine. In the last two decades, the use of gear transmissions in both defense and
commercial applications has substantially increased. With the demand for higher power
and performance, premature failures in transmissions often result in financial losses, and
sometimes even lead to catastrophic consequences. In the aerospace industry, where both
weight-to-load factor and efficiency are pushed to their design limits, one of the major
concems is fatigue failures in rotorcraft gear transmission systems. Such failures are
often a result of excessive gear tooth wear and tooth crack formation. Presently, the
prevention and management of premature equipment failures has become a vital part of
the maintenance program.

Current on-board condition monitoring systems for gas-turbine engine systems
often fail to provide sufficient time between warning and failure such that safety
procedures can be implemented. On the other hand, inaccurate interpretation of
operational conditions may result in false alarms and unnecessary repairs and downtime.
The early detection of incipient failure in a mechanical system is of great practical
importance as it permits scheduled inspections without costly shutdowns, along with
indication of urgency and location for repair before any catastrophic failure.

Presently, a considerable amount of work in machine life prediction has been
carried out using machine reliability and design life approaches[ 1,2 ]. However, most of
this work is based on statistical predictions developed by Lundberg and Palmgren[ 3 ]
without considerihg the conditions of machine components during various phases of their
lifespan. Besides the work reported in recent years by the Mechanical Failure Prevention
Group(MFPG)[ 4 - 6 ], very little has been cited in the literature concerning condition-
based failure prediction.
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The increasing requirements for long life and safe operation in mechanical
systems call for the development of an accurate machine fault identification and failure
prognostication system which is capable of on-line machine health monitoring as well as
machine life prediction. One of the advanced fault identification procedures used in
rotorcraft mechanical systems is the signature analysis of machine vibration/acoustic
signals[ 7 - 9 ]. The acquired machine vibration/acoustic signature is compared to a data
bank of standard healthy machine operation signatures to pinpoint the abnormalities of
the input signal. This procedure does not require a shut down of the rotating machinery,
and can be used as an in-flight diagnostic and trend monitoring device.

In order to develop an accurate machine fault identification and failure
prognostication system, it is very important to understand the dynamics of a gear
transmission system under a variety of fault conditions, as well as under nominal
conditions. This study deals only with the basic knowledge in fault identification of gear
component and the dynamic modelling of a gear transmission system under the effects of
gear tooth geometry imperfection.

The major objective of the research presented herein is the development of a
numerical model to predict the vibration in a gear transmission system due to gear tooth
imperfection or damage. The imperfection/damage of the gear tooth geometry is modeled
numerically as the deviation of tooth profile from its original geometry. To simulate gear
failures, a computer code developed at NASA Lewis Research Center| 10 ] was modified
to simulate various types of gear mesh conditions. The changes in mesh stiffness due to
the effects of tooth wear can be represented by using a tooth profile modification
procedure. The resulting changes in mesh stiffness are incorporated into the dynamic
simulation of the gear transmission system.

In simulating the vibration of the transmission system, the equations of motion are
established individually for each rotor-gear-bearing system. These localized changes in
the gear mesh stiffness are incorporated into each gear-rotor model during the dynamic
simulation [ 11-13 ]. The dynamics of each gear-rotor system are coupled with each other
through the gear mesh interacting forces and the bearing supporting forces. The global
vibrations of the system are evaluated by solving the set of coupled transient dynamics
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equations of all the rotor systems simultaneously including the vibration of the casing. In
order to minimize the computational effort, the number of degrees-of-freedom of the
system are reduced by using a modal synthesis procedure[ 11,12 ].

Results from the model were examined using a joint time-frequency analysis
method. This approach was chosen because the joint time-frequency analysis will
provide an instantaneous frequency spectrum of the system at every instant of the
revolution of the pinion while the traditional frequency analysis can only provide the
average vibration spectrum of the signal. In other words, the time-changing spectral
density from the joint time-frequency spectra will provide vital information concerning
the frequency distribution concentrated at a particular instant. The Wigner-Ville
Distribution (WVD) [ 14-16 ] was chosen for the joint-time frequency analysis.
Considerable success has been achieved in applying the WVD to gear transmission
systems [ 17,18 ] to recognize faults at various locations of the gear.

In addition, experimental results obtained from a gear failure test rig at NASA
Lewis Research Center were also used to experimentally validated the identification
procedure using the WVD as well as to verify the numerical simulations. A technique for
quantifying the damage in a gear mesh using an optimal tracker was also developed, and
results obtained using the optimal tracker were compared with those from the
experimental studies.

Based on results of this study, general conclusions are made concerning the
effects of local damage on the global damage of the gear transmission system. This study
applied the above discussed methodology on a variety of damaged gear models. The
numerical model used to simulate the dynamics of a gear transmission system with gear
tooth geometry imperfections was successfully developed. In addition, considerable
success was achieved in generating a coinprehensive database of the vibration signal due
to various kinds of gear tooth geometry imperfection patterns a in gear transmission
system. Some limited success was achieved in quantifying the damage using an optimal
tracker. Using the developed analytical/numerical model, a gear more extensive
fault/damage database can be developed for machine fault identification and failure

prognostication research.
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CHAPTER 2

THE EFFECTS OF GEAR TOOTH IMPERFECTION

ON GEAR MESH STIFFNESS

2.1. Objective

The magnitude variation in the tooth mesh stiffness can affect gear mesh
dynamics and loading significantly. The first step in determining the effects of gear tooth
imperfections on mech dynamics is to determine the relationship between gear tooth
imperfections and the resulting change to gear mesh stiffness.

The objective of this chapter is to develop a relationship describing the effects of
gear tooth imperfections on the static behavior of a gear system, with an emphasis on the
gear mesh stiffness. The method which calculates the tooth mesh stiffness of a gear
system is presented by Richardson [ 19 ]. The imperfection of a gear tooth is modeled
numerically as the deviation of the tooth profile from its designed geometry. The changes
in gear mesh stiffness due to various profile changes and imperfection patterns are
evaluated numerically. A computer code developed at NASA Lewis Research Center[ 10

] was modified to simulate various types of gear mesh conditions.

2.2. Gear Kinematic Properties

The ideal kinematic requirement for gear action is constant speed ratio. That is,
the angular velocity of the driven gear should be a constant multiple of the angular
velocity of the driving gear. Two curves that possess the property of constant speed ratio

when operated as contacting tooth surfaces are called conjugate curves. From the infinite
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variety of possible conjugate curves, the involute has been almost universally accepted
for use in gearing. An involute curve is generated by the end of a line that is unwound
from the circumference of a circle called the base circle.

Figure 1 shows two gear teeth in contact. Point L on gear 2 is in contact with
point M on gear 1. At this point of contact, the two tooth surfaces must be tangent to
each other and consequently must have a common normal W, W, passing through the
point of contact which intersects the line of centers C, C; at the instant center P, called the
pitch point. Since ideal gears are assumed rigid, the velocities of L and M along the
normal W1W; must be equal. The velocities of L and M perpendicular to the normal

sliding or relative velocity of the tooth surfaces.

Vo=w, GV ; Va=w, ?-Wl (2.1)
where w; and w; are the angular velocities of gears 1 and 2, respectively. Hence, by

similar triangles

R
T 22)

w, R,
This equation is frequently used to define the law of gearing, which states that the pitch
point must remain fixed on the line of centers. This means that all the lines of action for
every instantaneous point of contact must pass through the pitch point. Consequently,
ideal gears can be represented kinematically by two imaginary cylinders of radii R, and

Ry, called pitch cylinders, which roll on each other without slipping.
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If no friction is present between the mating gear profiles, then the resultant force
transmitted at the contact point L must lie along the common normal. For this reason the
common normal is called the pressure line, and the angle between the normal and a line
perpendicular to the line of centers C;C is called the pressure angle 6. The locus formed
by all points of contact as the gears rotate is known as the path of contact.

In order to maintain continuous conjugate action, a series of conjugate curves are
spaced uniformly around the circumference of a gear. The separation of these curves,
measured along the pitch circle, is called the circular pitch

27R
= = @3)

where i is the number of teeth, and R is the pitch-circle radius. The diametrical pitch is

defined as the number of teeth on the gear per inch of pitch diameter, as indicated in the

following equation;
- L (2.49)
2R
The relationship between circular pitch and diametral pitch is as follows:
PP=gr (2.5)

In an involute gear, the spacing of successive involutes along the pressure line or
line of action is known as the normal pitch, and is related to the circular pitch defined by
Equation (2.3) in the following way

P, =P, cos@ (2.6)

The contact-ratio is defined as the path of contact divided by the normal pitch,

and is a measure of the average number of tooth-pairs in contact. To provide continuous

action the contact ratio must be greater that one, and for most power transmission
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gearing, the value of this quantity lies between the values of one and two. In some
instances, the contact ratio can be as high as four.

The radial length of the teeth beyond the pitch circle is called the addendum
distance, and the radial depth of the teeth below the pitch circle is called the dedendum
distance. By trade association standards, these distances are specified as constant
multiples of the circular pitch.

The location in the gear mesh of the contact point between mating teeth can be
specified conveniently by the distance, s, between the pitch point and the contact point,
measured along the line of action.

When load is being transmitted through the gear mesh, the load is carried either by
one pair of teeth alone or jointly by two or more pairs of teeth depending on the value of
the contact ratio. It is assumed here that the contact ratio is between one and two. As the
gears rotate, the load is transferred from teeth that are in mesh to succeeding teeth that are
moving into mesh. Similarly, teeth moving out of mesh relinquish load as they leave

contact.

2.3. Load-Deflection Properties of a Gear Mesh
2.3.1 Definition of Spring-Stiffness of Gear Mesh

The ideal curves that are used to form gear teeth are designed to produce a
constant speed ratio. Thatis, the gears behave like two imaginary pitch cylinders which

roll without slipping.



)i

(i

i)

(o

(0

(o

{

]l

In actual gears, the materials employed cannot be absolutely rigid; consequently,
the gear-teeth will deflect due to the transmitted loads,which will cause the ideal pitch
circles to slip. Thus a deviation from ideal kinematic operation occurs.

For example, in Figure 2, gear 2 is fixed, by definition its pitch circle is also
fixed. Now consider a torque 1, to be applied to the mating gear 1. This torque on gear 1
must be balanced, for static operation, by the moment of the resultant force F, which, in
the absence of friction, acts along the pressure line.

7, =FcoséR, 2.7)
or in terms of T, the component of W which acts tangentially to the pitch circle,
uw=TR, (2.8)
When friction is present, or contact between mating teeth lies off the pressure line, W and
T in Equations. (2.7) and (2.8) no longer represent tooth loads exactly, but are still
convenient ways of expressing the input torque ;.

The spring stiffness of the gear mesh is defined as the amount of tangential load

T, computed from Equation (2.8), to produce one unit of pitch-circle slip, 8, as shown in

Figure 2

(2.9)

~
It
S
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(b) Loaded Gear Teeth (c) Applied Loads

Figure 2 Definition of Gear-Mesh Spring-Stiffness
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This definition can be equally well stated as the amount of load W acting along

the pressure line, required to produce one unit of relative displacement(s,) between gears,

measured along the pressure line

k= SE (2.10)
Where

Fcos6=T 2.11)
and

ss=8cos 0 2.12)

These two spring stiffness are related by virtue of Equations. (2.11) and (2.12)

— T _ KP
S(cos’6) cos? @

(2.13)

2.3.2 Compliance for a Single Pair of Teeth

The determination of the compliance of gear teeth is considerably difficult
because it is an integral function of the entire loaded tooth. In addition, because of the
stubbiness of the teeth, the foundation and shear effects are important. Cornell’s method
[ 20 ] parallels, to a great extent, Weber’s work[ 21], however Cornell uses O’Donnell’s
foundation factors [22,23 ]. The total combliance or flexibility of a gear tooth at the point
of load, yr, is made up of three deflections:
1. The basic deflection of the tooth as a cantilever beam, yg;
2. The deflection of the tooth caused by tﬁe fillet and foundation flexibility [ 22 ], yr;

3. The local deflection caused by the contact and compression between the two teeth, y..
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When two gear teeth are in contact, the total compliance is their combined
deflection per unit of load at the contact position or

C=n+yn)L=[a +y5)+Va +ye)+y)I/L (2.19)
where L is the applied load, and the deflections y are in the direction of the load. The

methods to calculate the three types of deflections in equation (2.14) are given below,

2.3.2.1 The Basic Deflection of the Tooth as a Cantilever Beam

When a load L is applied to the surface of a gear tooth, a deflection of the tooth
occurs in the direction of the load. Suppose that the tooth is rigid near the point of
loading. Then deflections of the tooth will still occur due to each of the following effects.

1. Bending of the tooth in the manner of a cantilever beam.
2. Direct compression of the tooth due to the radial component of the load o)
3. Direct shearing of the tooth due to the tangential component of the load (D).

The deflection and , therefore, compliance of a gear tooth over its beam portion is
easily obtained using elementary strength of materials. Referring to Figure 3(a), the total
of the bending and shear deflection in the direction of and at the point of application of
the tooth load L, which is at radius Ry, or position S along the line of action, can be

expressed in integral form as

L cos? ¢L£ fﬂ 240(1+,u)+Tan2¢;

yB A

Yz (2.15)

where [ is the section modulus of the tooth, and using the relationship of

E=x or n=z n=(0-&=z=(0-x) (2.16)
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(b) Segmental Form

Figure 3. Beam compliance of a gear tooth
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and a value of 1.2 has been assumed for the shear factor based on a rectangular tooth;
G=E/2(1+ u) .17

and A is the cross-sectional area as a function of x or z. The deflection of the basic tooth

can also be defined in a summation expression rather than integral form, see Figure 3(b),

In this case the tooth beam deflection at and in the direction of the load is

1
: 216, +=67 .
Lcos’ ¢, (‘ “r T 3% ) (2.4(1+,u)+Tan2¢L)
Vs =% g& 7 + ] (2.18)
Where
Y1 =(y1 +y1,)/2 2.19)

and

V4, =4, +1/A,)/2 (2.20)
Using these inverse forms for the values of I, and A, improves the accuracy for a small
number of elements. In equation (2.18)

I =0-x,) (2.21)
and

8, =(x, —x) (2.22)
Both approaches for beam flexibility assume a narrow tooth width, W. For wide teeth

where W/, > 5, the flexibility is decreased by the antielastic effect, so that the values of I

in equations (2.15) and (2.18) should be divided by (1-p?).
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2.3.2.2’ The Deflection of the Tooth Caused by the Fillet and Foundation Flexibility
Because of the fillet and the flexibility of the material to which the tooth is
attached, additional deflection will occur at the load; see references [ 21- 23 ). This fillet
and foundation deflection in the direction of the load, yr, is a function of the fillet
geometry and the load position and direction, and is determined by the effective fillet
length or angle yr for which the maximum deflection or work occurs at the load.
Based on Figure 4, O’Donnell [ 22, 23 ] shows that the deflection at and in the

direction of the tooth load due to the foundation effects, yrr, for plane stress is

LCos?g, 16.67(IF)2 (IFJ ( Tan’g, )
= —| +2(1-p)| —|+1534| 1+ — L 2.23
YF S TWE [ 7 \n,, A 241+ 1) 223
For wide teeth the expression for plane strain is used or
r 2 7]
16,67 [ Iy J N
LCos’g. 7z \h
yn=——WE¢L (1- %) Fz e ot (2.24)
2(———1"”' -~ J(—F]+1534(1+——-an b ]
N h, 24(1+ ) |

The O’Donnell coefficients in equations (2.23) and (2.24) differ slightly from those given
by Weber[ 21]. The first term in the brackets is the deflection at L due to the rotation
caused by the moment at hy. The second term is the sum of the deflections at L due to the
displacement at hr caused by the moment at hg: and the rotation at hy caused by the shear
force at he. The first part of the third term is the displacement at L due to the shear force
at hr based on the assumption that the effective depth for determining this deflection is

2'/, times the tooth thickness [ 21]. The second part of the third term is the deflection at
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L due to the normal component of the load assuming the same relationship holds as
indicated by the beam deflection equation; see equations (2.15) and (2.18).

Referring to Figure 4, the deflection at and in the direction of the load due to the
flexibility of the fillet and foundation, ¥r, the shaded region, is obtained from the
summation of the fillet beam deflection, ¥rB, using equations (2.15) and (2.18), and the
foundation deflection y, using equation (2.23) or (2.24), i.e.,

YE = YrF +¥rB (2.25)
where

le =1 +r(Siny, —Siny)

h. = h +2r(Cos7 — Cos
F . (Cosy Ye) 2.26)

[, =] r(Siny, — Siny)
h = A+ 2r(Cosy — Cosy,)

The value of yr is the one that maximizes the value of ¥Yr or yr, which can easily be done

as one integrates or sums up the deflection of the tooth starting at the beginning of the

fillet or at the load position.

2.3.2.3 The Local Deflection Caused by Compression of the Tooth Surfaces

The local compliance, yy, consists of the Hertz or line contact deflection plus the
compression of each tooth between the point of contact and the tooth centerline. Figure
15 gives the nomenclature for the parameters that determine the local deformation. There
are several approaches to calculate the local compliance. All of the expressions for the
local deformation are nonlinear with load because of the Hertz half contact width b.

Here, the closed form approach developed by Weber[ 21 ] was adopted.
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Weber in reference[ 21] developed an expression specifically for the local
deformation of two gear teeth, based on Hertz’s work on deformation between cylinders.
In order to obtain a closed form solution, he assumed small deformations so that just the

first two terms of the binomial expansion of the deformation needed to be used - ie,

Figure 4. Fillet and foundation compliance of a gear tooth
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Hertz Conrtact Width
f1 = RySin@ =Rg, Tan @
rg = RzSingL =Rg, Tan g
b = Half Hertz Cantact Width
Thy = 172 hi /Cos @’
hy = 1/Zh(,/Cos @,
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Figure 5. Nomenclature for local compliance
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IfE, = E; and p, = p,, equation (2.27) reduces to

_4a=p L) [ R ) u
TLT T IE W{“‘[z b J—(Z(I—p)ﬂ

The overall compliance, C, of the tooth pair is obtained by adding the local gear

(2.28)

(2.29)

20

tooth compliance defined by equation (2.27) with the gross tooth compliance for the two

gear teeth

(ys +yr) / L given by equations (2.15) or (2.18) and (2.25); see equation (2.14).

2.3.3 Load - Deflection Relationship of a Gear Mesh

When the total compliance for a single pair of teeth is known for all points of

contact along the pressure line, computation of the gear-mesh compliance can be carried

out. Two cases are possible:

1. Only one pair of teeth is in contact; then the mesh compliance is equal to the single -

tooth pair compliance. This is normally the case when contact is near the pitch point.

2. More than one pair of teeth is in contact. Successive pairs of teeth are spaced along

the line of action by one normal pitch. Consequently, the compliance curves for

successive tooth -pairs also can be spaced along the line of action by the same

amount.

For simplicity, the real gear - action is modeled as shown in Figure 6 which
represents engagement and disengagement of the various pairs of teeth. The gear action

can be represented by the movement of a cam underneath successive pairs of teeth. This
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cam is shown in Figure 6 during its passage underneath tooth-pairs n, n-1 and n+1;
however, after leaving these pairs, it will continue on, bringing other tooth pairs into
contact in succession. Point P on the cam surface corresponds to pitch-point contact, and
when any tooth-spring is contacting the cam at P, that tooth-pair is in contact at the pitch-
point in the real gear system. Tooth-springs in the model are spaced in the gear by an
interval of one normal pitch, just as the actual tooth-pairs are spaced in the gear system.
The distance AC on the cam is flat, and is equal to the ideal path of contact. Any tooth-
pair start engagement at point E and is in full engagement at point A and remain in
contact until point C is reached, then starts disengagement, untilpoint D is reached.

The load W is the total load transmitted through the mesh, and s, is the relative
motion between mating gears, measured along the pressure line. The relative motion is
resisted by the tooth-pair stiffness, kg , ko+1 , kot , etc., depending on the number of teeth
in contact.

For example, tooth-pairs n and n+1 are in contact at the position shown in Figure 6 ,

the compliance for the mesh at this position is given by the resultant compliance of the



L=T1/R3| = Tz/

Pn Pn
Koz >Kai K Ko+

S:=(51-S2

2
CA(S-S4) C. (S-S,

A A e T A
G

Fig. 6 Model of Gear Action
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tooth-springs n and n+1. Since the load L is shared between the two springs, the total

compliance is the parallel-combination of the individual compliance.

Cou G 1T, @39
or
CnCn+|
total C + C (2'31)

This result is easily generalized to the combined compliance for n pairs of teeth.
IIc,
Cﬂ = r-1 l n

S e ITc.]

r=tl k=] m=r+l

(2.32)

where each C refers to the component compliance of a given tooth-pair at a certain

location along the pressure line.

2.4. Model of Imperfection in Gear Tooth
To simulate gear failures, a computer code developed at NASA Lewis Research

Center{ 10 ] was modified to simulate various types of gear tooth imperfection. The
imperfection of the gear tooth was modeled by using a tooth profile modification
procedure that simulates changes in gear tooth surface profile. The tooth profile
modification is represented by their respective cams in Figure 6. The cams representing
the tooth profile modifications have the form

Ce(S-S)* and  Cy(-S4-8S) respectively (2.33)
where x is an integer. Typical gear tooth profile modifications were found to be

represented quite well by simply using a cam form with x = 2; see Figure 6.

23
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Hence the imperfection of the tooth can be simulated by engagement and
disengagement tooth profile modifications &4 and € , which represent the deviation of the
profile from the ideal tooth geometry, and are assumed to be a square function of the
distance along the line of action, e.g.

€,=C,(S5,-5,) and £4 =Cy(S; -5,)° (2.34)
where S; reflects the distance along the line of action from the pitch line; S and S. , the
distance along line of action from pitch line to the start of disengagement cam and end of
engagement cam; Cq and C,, disengagement and engagement cam relief, which are

determined by:

C,=4,/(S, -S,)? and C,=A,/(S,-S,) (2.35)
Where Soq and S, represent distances along the line of action from pitch line to end of
disengagement cam (tooth tip) and start of engagement cam; A4 and A, , maximum
disengagement and engagement tooth relief for the tooth pair, which is the total or
combined tooth pair relief at the start and end of an ideal mesh.

Figure 7 shows how this model in Figure 6 relates to the real gear tooth.
Suppose the tooth shown in Figure 7 is the driven gear. In Figure 7, the point P is the
pitch point of the tooth pair; point E is the start point of engagement; point A is the end
point of engagement; point C is the start point of disengagement; and point D is the end

point of disengagement.
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Figure 7. Gear tooth with modified tooth profile

(The lengths of S, and S, are measured along the line of action)

Tooth profile modification can be divided into two parts: one is the engagement
part, which is the tooth face between points E and A; another is the disengagement part,
which is the tooth face between points C and D. When two gears are in mesh, modifying

the tooth tip of one gear is the same as modifying the tooth root of the other gear.
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Hence the disengagement part can be defined as the driving gear tooth face between point
A and E.

To simulate the wear of a tooth face, two parameters needed to be specified. One
is Psop / Psok , which is the length of profile modification as a percent of the length of
total disengagement or engagement measured along the line of action. This parameter
determines the length of tooth wear. Another one is Aq4 and A, , which is the maximum
disengagement and engagement tooth relief for the tooth pair, which is the total or
combined tooth pair relief at the start and end of an ideal mesh. This parameter

determines the maximum wear at the tip or the root of the gear tooth.

2.5. Discussions of Results

As outlined above, there are two parameters which control the simulated tooth
wear. A parametric study was conducted to evaluate the change in gear-mesh stiffness
under different wear conditions. The analysis given above, along with its corresponding
computer code was used to analyze the gear-mesh stiffness change of a gear system under
different wear conditions.

For simplicity, a single stage gear mesh was chosen (one input gear and one

output gear). The pertinent parameters for the system are given in Table 1. An example

of the input data for the system is given in Table 2.
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1.

Table 1 Parameters of Gear System
input gear output gear
Diametrical Pitch 8.4667 8.4667
Pressure Angle (degree) | 22.5 225
Number of Teeth 14 28
Face Width (in) 1.1811 1.1811
Input Torque (1b.in) 30
Input RPM 7000
Table 2 Gearbox Input Data Set
Gearbox, Input pinion & gear
5 1. 2. 8.4667 22.5 0.
0
2 6. 14, 28.
2 9. 11811 1.1811
3 12. 1. 4. 30.
3 15.  6000.  6000. 1.
1 28. 0280835
1 31. .077535
1 52, d
4 60. 50. 50.  .000021 .000021
3 66. 60. 40. 00001
1 78. 00001
1 120. 0.
3 140. 25, 180.  .0528
2 150. 01 20.
1 167. .0075
3 481. .00000000 .00000000 .00000000
3 521. .00000 .0000 .00000
1 699. 0.
1
0-

1.
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First, Let’s analyze the wear of engagement:
1. Pso. was fixed at 50%, that is, the length of wear was fixed; the tip relief,
A, was chosen as le-5 in, 2e-5 in, and 4e-5 in . The results are shown in
Figure 8.
2. A, was fixed at 2e-5 in, that is, the maximum amount of wear at the tip or
the root of the gear tooth was fixed; the length of wear, Py, , varied at
50%, 60% ,70% and 80% . The results are shown in Figure 9.
Second, Let’s analyze the wear of disengagement part:
1. Psoq was fixed at 50%, that is, the length of wear was fixed; the tip relief,
A4, was chosen as 1e-5 in, 2e-5 in, and 4e-5 in . The results are shown in
Figure 10.
2. Aqgwas fixed as 2e-5 in, that is the maximum amount of wear at the tip or
the root of the gear tooth was fixed; the length of wear, Pyoy, varied as
50%, 60%, 70%, and 80%. The results were shown in Figure 11.
Finally, both the wear of the engagement and disengagement were considered:
1. Psoe and Psog were fixed at 50%, that is the length of wear was fixed; the tip
relief, A, and Ay, were chosen as 2e-5 in, 4e-5 in, 6e-5 in, and 8e-$ in.
The results are shown in Figure 12.
2. A, and Aq were fixed at 2¢-5 in, that is the maximum amount of wear at the
tip or the root of the gear tooth was fixed; the length of wear, Py, and Py,

varied as 50%, 60%, 70%, and 80%. The results are shown in Figure 13.
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From Figure 8-13, it is obvious that the gear tooth damage due to surface pitting
and wear can significantly change the phase of the mesh stiffness. The higher degree of

surface pitting and wear , the more the phase of the mesh stiffness will shift,

2.6. Summary

A numerical model has been developed to simulate the gear mesh stiffness change
resulting from gear tooth damage due to surface pitting and wear. The work in this
chapter can be summarized as follows:

1. A method has been developed to simulate the tooth surface wear in a gear
transmission system. The tooth surface wear level can be controlled by adjustment
of both amplitude and length in the tooth profile modification.

2. The gear mesh model has been developed to provide the mesh stiffness with the
effect of gear tooth damage due to various degrees of surface pitting and wear. It
will be shown in the next chapter that these changes in gear mesh stiffness can be

incorporated into a dynamic simulation of the gear transmission system for

dynamic predictions.



{

I S

QDA 3 N T

I

(

(illll

36
CHAPTER 3

THE EFFECTS OF GEAR TOOTH IMPERFECTION ON THE DYNAMIC

CHARACTERISTICS OF GEAR TRANSMISSION SYSTEMS

3.1. Objectives

In the last two decades, problems arising from excessive gear tooth wear and gear
tooth surface pitting in gear transmission systems have been of increasing concern for a
variety of gear users. Although regular visual inspections and preventive maintenance
can help to reduce the failure rate of gear systems, the cost and down time required make
such programs inefficient and uneconomical.

Vibration signature analysis methodologies are being developed to non-intrusively
examine the health and wear of gear transmission systems. Considerable success has
been achieved in applying the Wigner-Ville distribution concept (WVD) [14-16] in
machine health monitoring of gear transmission systems [17,18,24]. However, a
complete vibration signature database is necessary for the development of an effective
pattern recognition scheme. In order to populate such databases, the development of an
accurate analytical procedure to predict vibrations in gear systems due to wear and fatigue
failure is necessary.

The objective of this chapter is to develop a comprehensive procedure to simulate
and analyze the vibration in a gear transmission system with effects of surface pitting and
wear of the gear teeth under normal operating conditions. To simulate the vibration of
the transmission system, the equations of motion were established individually for each

rotor-gear-bearing system. The changes of the mesh stiffness at one particular tooth
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location or a number of consecutive teeth due to the effects of surface pitting and wear
were incorporated into the gear-rotor model for the dynamic simulation [11-13]. The
dynamics of each gear-rotor system were coupled with each other through the gear mesh
interacting forces. The coupling between the rotors and the casing structure were joined
through the bearing support forces. The global vibrations of the system were evaluated
by solving the transient dynamics of each rotor system simultaneously with the vibration
of the casing. In order to minimize the computational effort, the number of degrees-of -
freedom of the system were reduced by using a modal synthesis procedure [11,12]. The

results were evaluated by Wigner-Ville Distribution (WVD) [13-15).

3.2. Dynamics of the Gear-Shaft Configuration and the Gearbox System
The dynamics of the ith individual gear-shaft system can be evaluated through the
equations of motion for the vibrations of an individual rotor-bearing-gear system as

shown in Figure 14, given in matrix form, as

b+ [ W)= (R 03+, 0+ R ) @3.0)
where [M] and [K] are respectively the mass and shaft stiffness matrices of the rotor,
{Wi} is the general displacement vector of the ith rotor in the its local coordinate system,

and, {Fyi (1)}, {Fg (1)}, and {F; (t)} are the force vectors acting on the ith rotor system

due to bearing forces, gear mesh interactions, and mass-imbalances respectively.
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Figure 14. Schematic of a rotor-gear bearing system

The equation of motion of the tgearbox with p rotor systems can be expressed as
igure 14. Schematic of a rotor-gear bearing system.

[+ [, 1) = S 7, K ) (32)

i=]
where [Tc] represents the coordinate transformation between the ith rotor and the
gearbox.
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The bearing forces {Fy (t)] for the ith rotor can be evaluated as
Eol=[e, )W - . e [k, Xm) - [ . ) (33)
where [Cyi ] and [Ky; ] are respectively the damping and stiffness of the bearing, [T; }is
the coordinate transformation matrix for the gearbox with respect to the ith rotor, and W
are the casing displacements at the rotor locations.

The gear forces generated from the gear mesh interaction[40] can be written as

0= {F,0}+ {F,0} (3.4
where {Fy; (t)} is the vector containing the gear forces and moments resulting from the
relative rotation between the two mating gears and {Fui (1)} is the vector containing gear
forces and moments due to the translational motion between the two gears.

In order to calculate the transient and steady state dynamics of the system, the
coupled rotor and casing equations of motion must be solved simultaneously. To
minimize the computational effort, the modal transformation [11,12] procedure is applied
to reduce the degrees of freedom of the global equations of motion. Using m undamped
mode shapes of the ith rotor system [¢ , ¢z, i3 » ..., $im ] and m; undamped mode

shapes of the gearbox [¢ci , $c2 , §c3 5.+, deme ], the rotor displacement for the ith rotor can

be written as

=3 4,4, 3.5)

j=

and, similarly, the gearbox displacements as

w.i=[s.H4.} (.6)
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where {A; } and {A. } are the modal time functions of the ith rotor and the gearbox
respectively. Using the expansion in equation (3.5), the equations of motion for the ith
rotor in equation (3.1) can be written as

MIp. R 1 [, T K} = (A, 0+ o)+ R0} @7
Premultiplying by [¢: ]” and using the orthogonality conditions of the mode shapes [21],
the ith rotor equations of motion can be written as

Wl fal= R 7 )4 (R, 3.8)

where [ A? ] is the diagonal matrix of the squares of the natural frequencies of the system.

For the gearbox system, a similar transformation is carried out and equation(3.2)

can be written as
.+ [ fa}={F) 39)
For the system of k rotors, equation (3.8) can be repeated k times and solved with
the casing equation (3.9) simultaneously for the modal accelerations {Ai}and {A;}. A

numerical integration scheme is used to integrate the accelerations to obtain velocities

and displacements at each time step for transient calculations [11).

3.3. Vibration Signature Analysis
3.3.1 Joint Time-Frequency Analysis

To examine the vibration signal, a joint time-frequency analysis method was
chosen. This approach was chosen because of the large amount of information
represented in the joint time-frequency results which can not be represented separately in

either the time domain or the frequency domain. The joint time-frequency analysis will
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provide an instantaneous frequency spectrum of the system at every instant of the
revolution of the pinion while a Fourier Transform can only provide the average vibration
spectrum of the signal obtained during one complete revolution. In other words, the
time-changing spectral density from the joint time-frequency spectra will provide
information concerning the frequency distribution concentrated at that instant around the
excited instantaneous frequency which cannot be obtained in a regular vibration
frequency spectrum. The following is a description of the joint time-frequency analysis
method.
To examine the vibration signal in a joint time-frequency domain, the Wigner-

Ville method [14,15] was used in this research. While the Fast Fourier Transform (FFT)
technique can provide the spectral contents of the time signal, it cannot distinguish time
phase change during a complete cycle of operation. In other words, it assumes that the
time signals are repeatable for each time data acquisition window without considering the
effects of any magnitude and phase changes during the sampling period. The Wigner-
Ville distribution will provide an interactive relationship between time and frequency
during the period of the time data window. The comprehensive representation of the
vibration signal using the WVD method is the primary reason that it was used to compare
the predicted and experimental vibration results. The WVD (Wigner-Ville Distribution),

in a Discrete form, can be written as:

W.(nT, f)= 2Tix(nT+iT)x‘(nT—iT).e-f"ﬁ' (3.10)

i=-L

where
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W(t,f) = the Wigner-Ville distribution in both the time domain t and frequency domain f,
x(t) = the time si@al
T = the sampling interval
L = the length of time data used in the transform
To allow sampling at the Nyquist rate and eliminate the concentration of energy
around the frequency origin due to the cross product between negative and positive
frequency [14,15), the analytic signal was used in evaluating the WVD. The analytic
signal s(t) is defined as
s(t) = x(t) + jH[x(1)] 3.11)
where H[x(t)] is the Hilber transform of x(t). However, an alternative approach can be
used to calculate the analytic signal using the frequency domain definition. The analytic
signal s(t) can be evaluated by calculating the FFT of the time signal x(t), then setting the
negative frequency spectrum to zero. The analytic signal can be obtained by evaluating
the inverse FFT of the spectrum.
To simplify the computational effort, the WVD can be evaluated using a standard
FFT algorithm. Adopting the convention that the sampling period is normalized to unity,

it is necessary only to evaluate the WVD at time zero. Hence

-janfi

W.(0,f) = ZZL:k(i)e (3.12)

i=—L
where k (i) = s(i) s” (i).
In order to avoid a repetition in the time domain WVD, a weighting function [28]

was added to the time data before the evaluation process. Such a process may decrease
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the resolution of the distribution, but it will eliminate the repetition of peaks in the time

domain and the interpretation of the result is substantially easier.

3.3.2 Frequency Domain Analysis

The frequency spectrum is found by applying a Discrete Fourier Transform (DFT)

on the time averaged signal x(t), such that the spectral components are

X =TS x(0) exp( o ) (3.13)

=0
where

x(t) = time domain signal

X(ky= frequency domain signal

T = sampling time interval

N = number of data points

The frequency components were examined in the frequency domain.

3.4. Discussions of Results

In order to examine the sensitivity of the system vibrations on gear tooth
imperfections, the vibrations in gear systems due to various levels of gear wear were
analyzed. The basic parameters used in this analysis are the magnitude and geometry of
tooth profile deviation and the number of teeth involved.

The model of rotor-gear system used in this analysis is shown in Figure 15. The
number of teeth in the gear model is 28. And the vibration analysis of this system under

various levels of gear wear are given as follows.
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First, surface pitting on a single tooth is used with the magnitude of the tip relief

given in Table 3. The damaged tooth is the 12th tooth from the reference point on the

gear.
Table IIT Magnitude of the Maximum Tip Relief
case I case II case ITI
Ist tooth le-5 | 2.e-5 | 4.e-5 | 4.e-5 [ 4e5 [4e-5 [4e5 | 405 4.e-5
2nd tooth 0 0 0 le-5 [2.e-5 | 4e-5 | d.e-5 | 4ee-5 | 465
3rd tooth 0 0 0 0 0 0 le-5 | 2.e-5 | 4.e-5

Figure 16 - 18 show the WVD, the time signal (to the left of the WVD), and the
frequency spectra (below the WVD) of the vibrations of the corresponding system. In
Figure 16, a small cross pattern had developed in the WVD around the 154 degrees
location which is the exact mesh time of the 12th tooth. A small phase shift is also
detected in the time signal at that location. As the damage of the tooth becomes more
severe (increase in the magnitude of the profile modification), the cross pattern is more
obvious and the phase shift is getting more pronounced, as shown in Figure 17 and Figure
18.

Secondly, the dynamics involved with damage on two consecutive teeth (12th and
13th) was simulated. During this simulation the wear on the first tooth (12th) is kept

constant while the amounts of wear on the second tooth (13th) increased similarly to that

given in Table 3,




{

{ (I ti

(e

{

{

g

45

Figure 19 - 21 show the WVD, the time signal, and the frequency spectra of the
vibrations of a corresponding system with damage on two consecutive teeth. When the
damage on the tooth is increased, the cross pattern shown in the WVD is not as sharp as
those with single tooth damaged. However the sideband components at the tooth pass
frequency increase with increasing damage, as seen in the frequency spectra of Figures
19-21. In addition, the once per revolution low frequency component increases along
with its sidebands. As seen in the time domain, the phase shift becomes more
pronounced als.o

Thirdly, the dynamics involved in three consecutive teeth (12th, 13th and 14th)
were examined. In this case, the wear/damage in the first and the second teeth are kept
constant, the amounts of wear in the third tooth increase similarly to those given in Table
3.

Figure 22 - 24 show the WVD, the time signal, and frequency spectra of the
vibrations of the corresponding system with three consecutive teeth damaged. The
frequency components near the tooth pass frequency show very small changes from those
with two consecutive teeth damaged, Figure 19 -21. However, the frequency components
near the shaft frequency has acquired a substantial increase with large sidebands.

Based on the above discussion, one can generalize the effects of single and
multiple consecutive tooth damage on the vibrations of a gear transmission system.
Using the WVD technique, 3-D image pattern recognition, procedures can be developed

to identify various combinations and levels of tooth damage.
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Figure 15. Gear transmission model
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Figure 22. Simulated pinion vibration signature
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3.5. Summary

A numerical procedure has been developed to simulate the vibration in a gear
transmission system with effects of gear tooth damage due to wear and pitting. The work
presented in this chapter can be summarized as follows:

1) A modal synthesis methodology has been used to simulate the dynamics of gear
transmission systems. The computational efforts has been greatly reduced by modal
transformation.

2) The gear mesh model developed to simulate the gear tooth damage due to wear and
pitting can easily be incorporated into the global transmission system for dynamics
predictions.

3) The Wigner-Villle distribution (WVD) method provides a comprehensive
representation of the vibration signal. It was successfully used to verify the analytical
model.

4) The WVD method provides detailed information. Hence, using the time averaging
technique, frequency spectrum analysis, and the WVD, a signature analysis scheme
can be developed to examine and characterize the vibration signal of the gear system.

5) A parametric study of the effects on the vibration signal due to various degrees of
pitting and wear damage, could pmvidé a comprehensive database for gear fault

detection and damage estimation research.
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CHAPTER 4
VIBRATION SIGNATURE ANALYSIS OF

A FAULTED GEAR TRANSMISSION SYSTEM

4.1 Objective

The objective of this chapter is to examine and compare the three different
approaches to detect gear wear and failure. The frequency domain analysis is based on the
spectral display from a Fast Fourier Transform algorithm. The time domain analysis
includes the time synchronous averaged signal, and the statistical based techniques FMO,
FM4, NA4*, and NB4* applied to the time averaged signal. The joint time-frequency
analysis uses the WVD on the vibration data with special windowing techniques. All of the
analysis methods are applied to the vibration data of a failure from the spiral bevel gear
fatigue test rig in the NASA Lewis Research Center. Results from the various methods are

compared and general conclusions are drawn from the results.

4.2 Technical Approach

As discussed in the previous section, three major methodologies: A) the frequency domain
approach, B) the time domain approach, and C) the Joint time-frequency approach are used
in this study. The following is a description of the three methodologies:
(A) Frequency Domain Techniques

The frequency spectrum is found by applying a discrete FFT on the time averaged signal

X(t), such that the spectral components are



XK = T3 x(t) exp(-1271K,
=0 N @.1)

where x(t)= time domain signal, X(k)= frequency domain signal, T= sampling time
interval, N= number of data points. The frequency components are examined in the
frequency domain and compared with those obtained at various stages of the fault

development in the spiral bevel pinion.

(B) Time Domain Techniques

58

Four different time domain techniques for early detection of gear tooth damage are used in

this study for evaluation and comparison. All of the time domain techniques are applied to
the vibration signal after it has been time synchronously averaged. These techniques are:
FMO, FM4, NA4*, and NB4*. These parameters are defined as follows:

FMO[46] is a course fault detection parameter that compares the maximum peak to peak
amplitude to the sum of the mesh frequencies and its harmonics

FMO0 = PP

2 A(f)

il (4.2)
where PP= maximum peak to peak amplitude in signal, A(f)= amplitude at mesh
frequency and harmonics, n= total number of harmonics in frequency range, and FM4[46)
is an isolated fault detection parameter, and is given by the normalized kurtosis, of the
resulting difference signal as

N _ N 7
FM4=N > (d, -d)* /[Z(d, —d)2] 4.3)

i=]

i=]
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where d(t)= A(t) - R(t), -d 2= mean value of d(t), A(t)= original time synchronous signal,
R(t)= regular meshing components plus their first order side bands, and N = total number
of data points in the time signal.

NA4*[45-48] is a general fault detection patameter with trending capabilities. A
residual signal is constructed by removing regular meshing components from the time
averaged signal. For NA4, the first order sidebands stay in the residual signal and the fourth
statistical moment of the residual signal is then divided by the averaged variance of the
residual signal, raised to the second power. The average variance is the mean value of the
variance of all previous records in the run ensemble. This allows NA4 to compare the
current gear vibration with the baseline of the system under nominal conditions. NA4 is
given by the quasi-normalized kurtosis equation shown below:

NA4*M) =N ZN:(r,- -7 {%ﬁ[i(n —r‘,)’}} 4.4)

j=t L=l

where r = residual signal, 7 3= mean value of residual signal. N= total number of data
points, in one time record, i= data point number in time record, j= time record number, and
M-=current time record number in run ensemble.

An enhancement to this parameter is given by NA4*, in which the value of the
averaged variance is "locked" when the instantaneous variance exceeds a pre-determined
value.[47] This provides NA4 with enhanced trending capabilities, in which the kurtosis of
the current signal is compared to the variance of the locked baseline signal under nominal

conditions.
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NB4 is another parameter similar to NA4 that also uses the quasi-normalized
kurtosis given in equation (4.4). The major difference is that instead of using a residual
signal, NB4 uses the envelope of the signal banpassed about the mesh frequency. Again, as
with NA4*, NB4* is an enhancement to the NB4 parameter, in which the value of the
average variance is "locked" when the instantaneous variance excwﬂs a pre-determined

value. The equation for NB4* is given below:

NB4*(M) =N _ZN;(S,_gy /{_;Zﬁ[i(su 5) J} 4.5)

Jj=

—

and
s(t) = magnitude of {b(t) + i {H[b®)]}} 46)

where b(t)= time averaged signal bandpassed filtered about the meshing frequency,
H[b(t)]=the Hilbert Transform of b(t), N= total number of data points in one time record, i=
data point number in time record, j= time record number, and M= current time record
number in run ensemble.
(C) Joint Time-Frequency Technique

To examine the vibration signal in a joint time-frequency domain, the Wigner-Ville
method[14-18,41,49] is used in this study. While the FFT technique (eq. 4.1) can provide
the spectral contents of the time signal, it cannot distinguish time phase change during a
complete cycle of operation. In other words, it assumes that the time signals are repeatable
for each time data acquisition window without considering the effects of any magnitude and

phase changes during the sampling period. The Wigner-Ville distribution will provide an
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interactive relationship between time and frequency during the period of the time data

window. The WVD (Wigner-Ville Distribution) can be written as:

WD = Dx+ D xv- D) et
= @7

To allow sampling at the Nyquist rate and eliminate the concentration of energy around the
frequency origin due to the cross product between negative and positive frequency,[14,15]

the analytic signal was used in evaluating the WVD. The analytic signal s(t) is defined as

s(t) = x(t) + JH[x(®)] @4.3)
where
H[x(t)] = the Hilbert transform of x(t) defined by:

_ 1%x(
Hx®] = — dg
”£“5 4.9)

However, an alternative approach can be used to calculate the analytic signal using the
frequency domain definition. The analytic signal s(t) can be evaluated by calculating the
FFT of the time signal x(t), then setting the negative frequency spectrum to zero. The
analytic signal can be obtained by evaluating the inverse FFT of the spectrum. To simplify
the computational effort, the WVD can be evaluated using a standard FFT algorithm.
Adopting the convention that the sampling period is normalized to unity, equation (4.7) can

be rewritten as

Wi(n, f) = ZZL:x(n+i) X*(n-i) . g4rf
" (4.10)

As for the continuous time case, it is necessary only to evaluate the WVD at time zero.
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Hence

W0, ) = 23 k(i) e "
= 4.11)

where k(i) = s(i) s* (). Equation (4.12) can be evaluated using the discrete FFT algorithm.
In order to avoid a repetition in the time domain WVD, a weighting function[18) is added

to the time data before the evaluation process. Such a process may decrease the resolution

of the distribution, but it will eliminate the repetition of peaks in the time domain and the

interpretation of the result will be substantially easier.

4.3 Description of Experimental Procedure

The fatigue damage on the test pinion shown in Figures 25 to 32 was obtained using
the spiral bevel gear fatigue test rig illustrated in figure 33, at the NASA Lewis Research
Center. The primary purpose of this rig is to study the effects of gear tooth design, gear
materials, and lubrication types on the fatigue strength of aircraft quality gears.[50] Because
spiral bevel gears are used extensively in helicopter transmissions to transfer power between
nonparallel intersecting shafts, the use of this fatigue rig for diagnostic studies is extremely
practical. Vibration data from an accelerometer mounted on the pinion shaft bearing
housing was captured using a personal computer with an analog to digital conversion board
and anti-aliasing filter. The 12—tooth test pinion, and the 36-tooth gear have:, 0.5141 in
pitch, 35 degree spiral angle, 1 in. face width, 90 degree shaft angle, and 22.5 degree
pressure angle. The pinion transmits 720 hp at nominal speed of 14,400 rpm. The test rig

was started and stopped several times for gear damage inspection. The test was ended at
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17.79 operational hours when a broken portion of a tooth was found visually during one of

the shutdowns.

4.4, Discussions of Results

A series of pictures showing the deterioration of the pinion teeth at various stages of
the test are illustrated in figures 25 to 32. In figure 1 the initiation of a small pit on one of
the pinion teeth during the first shutdown, at about five and a half hour into the test is
shown. As the test progressed, the rig was shut down seven more times to examine the
severity of the pitting and its relationship with the corresponding vibrations. Figures 2d to
28 show'the increase of the damaged area at the pinion teoth as the elapsed time increased
t0 6.55, 8.55, and 10.03 hr respectively. Note that in figure 29, as the elapsed time increased
to 12 hr, the damage of the pinion tooth increased to 75 percent of the tooth surface. At this
stage, pxttmg also initiated on the adjacent tooth and continued to grow as the time mcreased
to 14.53 hr, figure 30. At 16.16 hr, the damage has grown to three adjacent teeth as shown
in figure 31. The test was terminated when a breakage is detected on one of the three
heavﬁy pltted teeth at 17.79 hr, as shown in ﬁgu:e 32. |

anux'e 34 depicts the running spwd of the test ng durmg various stages of the
experiment. Note that there is some ﬂuctuatnons present in the running speed after each
shutdown, with a magnitude of approximately 6 percent about the nommal plmon speed of
14, 400 rpm. There is a sharp change in speed at approximately 8.75 hr 'Ihese vanatlons in
speed create a substantxal effect on the nbratlon signal, whxch is amplified in the NA4 (ﬁg

D, NB4 (fig. 38), and the WVD (fig. 45) analysis.
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Figure 25. Photograph of Figure 26. Photograph of Figure 27. Photograph of
pinion damage at 5.50 hr. pinion damage at 6.55 hr. pinion damage at 8.55 hr.

{

-— Figure 28. Photograph of

I8! Figure 29. Photograph of Figure 30. Photograph of
pinion damage at 10.03 hr. pinion damage at 12.03 hr. pinion damage at 14.53 hr.
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Figure 31. Photograph of pinion damage at ~ Figure 32. Photograph of pinion damage at
16.16 hr. 17.79 hr.

Accelerometer
mounting location
(measuring vertical
accelerations of
bearing housing)

Figure 33. Spiral bevel gear rig at NASA Lewis Research Center.
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Figure 35 shows the results of the FMO analysis. As seen from the figure, FM0 shows
only moderate changes as the damage starts and progresses. It does not provide any
indication as the damages extends to the adjacent teeth, resulting in pinion tooth fracture.
The majority of the variations in the FMO parameter are most probably due to the speed
changes experienced during the test.

Results from the FM4 parameter, as seen in figure 36, shows a possible reaction as the
pitting started to occur, however, it does not provide any coherent indication of the severity
of the pitting as the damage increased. In addition, it does not provide any information to
distinguish the pitting of a single or multiple teeth.

Results from NA4 and NA4* are illustrated in figure 37. It is obvious from the figure
that both NA4 and NA4* provide a very good indication of the pitting development on the
pinion tooth. The magnitude of the parameter increases to a nondimensional value of 7 after
shutdown #2 at 6.55 hr, and further to a value of 17 when the pitting covers 75 percent of
the toéth surface at 8.5 hr. As expected, the "loékéd" denominator in NA4* pmvides a more
robust indication as the pitting progresses.[45,47] Again, both parameters are very sensitive
to the speed variations, especially after shutdown #3 and #6. | o

| The NB4 and NB4* parameters, as shown in figure 38, show a very similar trend to
those of NA4 and NA4*, with a moie robust ihdicatidn to the severity of the damage. "
However, both NA4 and NB4 did not provide any type of indication as the damage spread

to other teeth, and finally as tooth fracture occurred.
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Figure 39 shows a WVD (and corresponding intensity scale) and below the WVD the
frequency spectrum (from FFT analysis) of a uniform sine wave signal shown at the left
side of the figure. Note that only the frequency component of the input frequency is detected
by both the frequency domain analysis and the joint time-frequency distribution. The WVD
does not exhibit any changes during the 1 cycle (0 to 360 degrees) rotation of the shaft.
When a short term amplitude and phase change is added to the system, as shown in figure
40, the frequency spectrum remains virtually unchanged. The WVD shows a dramatic
change of the energy distribution pattern at the location where the change occurs. The
lighter shades of the distribution display indicates a smaller vibration amplitude, which is
shown by the time signal at the left side of the figure. Such an effect could be possibly
caused by a chipped or cracked tooth. Figure 41 shows the effects of a short term amplitude
increase in the time signal to simulate vibrations caused by gear tooth surface damage. Note
that the frequency spectrum remains the same showing only the component of the exciting
frequency while the WVD again provides a good indication of the amplitude increase by the
widening of the shaded area to a diamond shape at the corresponding "damaged" tooth
location. Figure 42 shows the effects of a time decaying short term amplitude and phase
change signal. The WVD shows a half diamond shape of shaded area, similar to that of
figure 40, at the location where the amplitude and phase changes are presented. As seen in

figure 42, the frequency spectrum gives very little indication of the signal change.
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Figures 43 to 50 show the WVD and frequency spectra of the spiral bevel pinion
vibration at various stages of damage, corresponding to the photographs given in figures 25
to 32. Figure 43 shows the occurrence of the initial pitting at around 200 degrees from the
triggering point of the gear, at 5.5 hr, of running time. At 6.55 hr, the pitting on the tooth
surface progressed to a more noticeable stage, as shown in figure 26, the WVD pattern,
figure 44, begins to adopt those of a short term amplitude and phase change as illustrated in
figure 42. At this stage, a Cross pattern appeared in the joint time frequency domain
(WVD) as the damaged gear tooth produced a change in the frequency components other
than the mesh frequency. Due to the speed increase at 8.55 hr, the overall WVD amplitude
increases substantially as shown in figure 45. At the running time of 10.03 hr, the corre-
sponding WVD in figure 46 shows the initiation of a cross patter as surface pitting in the
damaged tooth becomes more pronounced which can also be evidenced from the
photograph of the pinion gear in figure 28. This phenomenon is also evident in the
frequency spectrum with the existence of sideband components. At 12.03 hr, when the
pitting on the pinion tooth has extended to about 75 percent of the tooth surface as shown in
figure 29, the WVD pattern exhibits a solid cross pattern extending over the mesh frequency
and several of its adjacent sidebands. The high concentration in the WVD energy and the
initiation of a second cross pattern at 14.53 hr, figure 48, shows the advancement of the
pitting process on second tooth, as illustrated in figure 30. This is further confirmed by the
large amplitude of sideband component(above mesh) in the frequency spectrum. At 16.16
hr, as seen in figure 49, the WVD pattern changes, showing more advanced damage pattern
similar to the multiples of the decay of a single short term amplitude increase and phase

change demonstrated in figure 42. Such phenomenon is due to the pitting of three
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consecutive teeth in the pinion gear as shown in the picture given in figure 31. The
frequency spectrum in figure 49 shows a substantial amplitudes increase in the sideband
components. The discontinuity of the WVD at the mesh frequency, shown in figure 50,
similar to the example shown in figure 16 due to the short term phase change, is probably
the result of the instantaneous phase change caused by the fractured tooth, as illustrated in
figure 32. The two cross patterns in the WVD is very distinct as the effects of pitting at the
tecth adjacent to the fracture tooth become more pronounced. Note, also that, as given in
figure 50, the amplitude of the sideband frequencies(above and below the mesh frequency)

increase substantially.

4.5 Conclusions
Based on the results of the application of the various aforementioned methods, the

following conclusions can be made:

1) The FMO parameter shows only moderate changes as the damage starts and progresses.
It also fails to indicate the fracture of the pinion tooth.

2) The FM4 parameter shows a possible reaction to the start of the pitting process,
however, no coherent indication is provided for the growth and severity of the pit.

3) The NA4* and NB4* parameters show good reactions to the initial pitting damage and
very nice indications for the growth and severity of the pitting damage. However their
indications for the tooth fracture is somewhat unclear.

4) The WVD provides vital information conceming both the severity and the location of

the pitting process in the gear system.
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5) The fracture of the gear tooth and its exact location can be pinpointed using the WVD
technique. However a machine vibration signature database is required to interpret the
resulting WVD.

6) The occurrence and the severity of gear tooth failure can be reliably detected using a

combination of the time averaging, the frequency analysis, and the WVD techniques.
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CHAPTER 5
ANALYSIS OF THE EFFECTS OF SURFACE PITTING AND WEAR ON THE
VIBRATIONS OF A GEAR TRANSMISSION SYSTEM
5.1 Objective
Vibration signature analysis methodologies are being developed to non-intrusively
examine the health and wear of gear transmission systems. Using spectral analysis, the amplitude
of the frequency spectrum of the measured vibration signal is calculated and displayed in a
continuous manner. However, the spectral analysis technique is difficult to apply in a highly
complex system where the large number of spectral lines often makes it difficult to detect
significant changes in the spectrum. Another methodology is the joint time-frequency approach
which applies the Wigner-Ville distribution (WVD) [14-16] on the time vibration signal of the
system. Unlike the regular Fourier transform process, the WVD provides an instantaneous
frequency spectrum of the system at any instant throughout the sampling period (while FFT
provides a averaged frequency spectrum of the total sampling period). The spectral density of the
fundamental exciting frequency and its sidebands change as the shaft rotates through a complete
revolution. Some success has been achieved in applying the WVD concept in the health
monitoring of gear transmission systems[16-18,26]. However, a complete vibration signature
database is needed for development of an effective pattern recognition scheme. In order to
populate such databases, the development of an accurate analytical procedure to predict
vibrations in gear systems due to wear and fatigue failure is necessary.
The objective of this paper is to develop a comprehensive procedure to simulate and

analyze the vibration in a gear transmission system with effects of surface pitting and wear of the



l e
I

1

i

§iB}

(B

Ll

{

78
gear teeth under normal operating conditions. The effects of changes in magnitude and phase of

the mesh stiffness at one particular tooth or a number of consecutive teeth were evaluated in
order to simulate the effects of surface pitting and wear. The effects of these localized changes in
the gear mesh were incorporated into each gear-rotor model for the dynamic
simulation[11,51,52]. The dynamics of each gear-rotor system were coupled with each other
through the gear mesh interacting forces. The coupling between the rotors and the casing
Structure were generated through the bearing support forces. The global vibrations of the system
were evaluated by solving the transient dynamics of each rotor system simultaneously with the
vibration of the casing. In order to minimize the computational effort, the number of
degrees-of-freedom of the system were reduced by using a modal synthesis procedure[11,51].
The global transient dynamics of the overall transmission system were calculated in the modal
coordinates where the modal accelerations were integrated numerically to obtain the velocities
and displacements at each time step. An FFT procedure was used to transform the transient
vibrations into the frequency domain for signature analysis. In addition, the Wigner-Ville
distribution[14-18,26,53] was also used to examine the gear vibrations in the joint
time-frequency domain for vibration pattern recognition. Experimental vibration results obtained
from a gear fatigue test rig at NASA Lewis Research Center[48) were used to verify the
analytical procedure.
3.2. Solution Procedures

5.2.1 Dynamics of the Gear-Shaft Configuration and the Gearbox System
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The dynamics of the ith individual gear-shaft system can be evaluated through the
equations of motion for the vibrations of a individual rotor-bearing-gear system as shown in
Figure 51[11,51}, given in matrix form, as

[MI{W (K JAWI={ FulO} +{ F @} +{ Fu(®)} 6.1

where [M] and [K,] are respectively the mass and shaft stiffness matrices of the rotor, {W,} is the
general displacement vector of the ith rotor in the its local coordinate system, and, {F,(t)},
{F(1)}, and {F,;(t)} are respectively the force vectors acting on the ith rotor system due to
bearing forces, gear mesh interactions, and mass-imbalances. In this model, the dynamics
between the gearbox and the rotor are coupled through the bearing forces, which are evaluated
by the relative motion between the rotor and the gearbox. The interactions between the each
individual rotor are coupled through the gear forces generated by the relative motion of the two
mating gears at the mesh point.

The equations of motion of the gearbox with p rotor systems can be expressed

P

[MJ W+ [KT{W} = D [Tu] {Fu(®)} (.2

i=]

where [T; ] represents the coordinate transformation between the ith rotor and the gearbox.

5.2.2 Evaluation of Bearing Forces

The bearing forces {F,(t)} for the ith rotor can be evaluated as
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{Fu®} = [Cod (W} - [T (Wod) + [Kn] (W} - [Tie] (Wa}) (5.3)
where [C,] and [K,] are respectively the damping and stiffness of the bearing, [T,] is the
coordinate transformation matrix for the gearbox with respect to the ith rotor, and W, are the

casing displacements at the rotor locations.

5.2.3 Evaluation of Gear Forces
The gear forces generated from the gear mesh interaction[54] can be written as
{Fa®} = {Fa(} + {Fu()} (5.9
where {F;(t)} is the vector containing the gear forces and moments resulting from the relative
rotation between the two mating gears and {F,(t)} is the vector containing gear forces and
moments due to the translational motion between the two gears. the forces and the torsional
moments due to relative rotation between the kth location of the ith rotor and the lth loation of

the jth rotor, can be respectively expressed[54,10] as

{Fu®} = [Dg]{Kgi} (R ) - (R;0,) (5.5)

{Mw(9} = Ri [Dg] {Key ((RuOi) - (R;18,)) (5.6)
where R, and 6, are the radius and angular displacements in the ith-rotor gear localized gear
rotational coordinates, R, 7 and g, 8 are radius and angular displacements of the Ith location at
the jth rotor in the ith-rotor localized gear rotational coordinates, [K,;l is the gear mesh stiffness

matrix between the ith and jth rotors, and [D,] is a diagonalized matrix transforming the



localized gear coordinates into the ith rotor coordinate system. In addition, the translational

forces can be represented by

- {Fu()} = [Da] {Key} [DaT' ([Ty]{Wu} - (W) X)
where [T;] is the transformation matrix between the ith and jth rotor coordinates. For a rotor
with one gear mesh, the gear force vector {F(t)} defined by equation (5.4) will have non-zero
elements only at the gear location, i.e., the kth station. As the gear rotates, the stiffness of the
gear mesh changes as the gear mesh progresses from single to multiple tooth contact. This
cycling effect of the gear mesh stiffness is the main source for thé mesh frequency excitation in

the system.

5.2.4 Modal Synthesis Procedure
— In order to calculate the transient and steady state dynamics of the system, the coupled
- rotor and casing equations of motion must be solved simultaneously. To minimize the
S computational effort, the modal transformation[11,51] procedure will be applied to reduce the
degrees of freedom of the global equations of motion. Using m undamped mode shapes of the ith
rotor system [¢,,, ¢, $s, .., $,] and m, undamped mode shapes of the gearbox [¢.,, ¢;» ds -

¢anc)» the rotor displacement for the ith rotor can be written as
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or

(W} = [8,]{4} 6.9

and , similarly, the gearbox displacements as

(W} = [8.]{A) (5.10)

where {A;} and {A.} are the modal time functions of the ith rotor and the gearbox respectively.
Using the expansion in equation (8), the equations of motion for the ith rotor in equation (5.1)

can be written as

IM][8] {4} + [K T[] {4} = {Fu()} + {Fa®} + {Fu(®} (G.11)

Premultiplying by [¢]" and using the orthogonality conditions of the mode shapes[11], the ith

rotor equations of motion can be written as

(A} + [ ]{4} = (Fud + (Fo} + (Fu (.12)

where [A’] is the diagonal matrix of the squares of the natural frequencies of the system, and

(Fut = [8,] (Fu®)} (5.13)
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(Fot = [8,] {Fa®)} (5.14)

{Fut = [8,] {Fu(®} (5.15)

For the gearbox system, a similar transformation is carried out as equation (2) can be written as

(A} + [ 1{A} = (F.) (5.16)
For a system of k rotors, equation (5.12) can be repeated k times and solved with the casing
equation (5.16) simultaneously for the modal accelerations {A,} and {A.}. A numerical

integration scheme is used to integrate the accelerations to obtain velocities and displacements at

each time step for transient calculations [11].

5.3. Signature Analysis of Vibration Signal
5.3.1 Frequency Domain Analysis
The frequency spectrum analysis is used by applying a discrete Fourier Transform on the

average time signal x(t) such that the spectral components are

N-1 iy
XM = T3, x() exp( L2, 5.17)

i=0
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where x(t) is the time averaged of the vibration signal W(t) and T is the sampling interval. The
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frequency components are examined in the frequency domain and compared with those obtained

at various stages of the fault development in the experimental gear test rig.

S - 3.2 Joint Time-Frequency Analysis : The Wigner-Ville Distribution

To examine the vibration signal in a joint time-frequency domain, the Wigner-Ville

method[14-16] is used in this study. The Wigner-Ville distribution will provide an inter-domain

relationship between time and frequency during the period of the time data window. The WVD

(Wigner-Ville Distribution) can be written as:

-]

WMﬁ=fm+?£ﬂr?ﬁwh (5.18)
or in a discrete form as

L
WV (hTf) = 2T 3 x(nT + iT) x"(nT - iT). ¢#* (5.19)

i=-L

where WV(t, f) is the Wigner-Ville distribution in both the time domain t and the frequency

domain f. To allow sampling at the Nyquist rate and eliminate the concentration of energy

around the frequency origin due to the cross product between negative and positive

frequency[14-16]), the analytic signal was used in evaluating the WVD. The analytic signal s(t)

is defined as

s = x(t) + jH[x(®)]

Where H[x()] is the Hilbert transform of x(t) defined by :

(5.20)
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x(5)
t-¢

Hfx()] = de (5.21)

N |~
ét__.S

However, an alternative approach can be used to calculate the analytic signal by the frequency
domain definition. The analytic signal s(t) can be evaluated by calculating the FFT of the time
signal x(t), then setting the negative frequency spectrum to zero. The analyticsignal can then be
obtained by evaluating the inverse FFT of the spectrum. To simplify the computational effort,
the WVD can be evaluated using a standard FFT algorithm. Adopting the convention that the

sampling period is normalized to unity, Equation (5.19) can be rewritten as

WV.nj) =2 Z x(n +§) x'(n-i). &% (5.22)
As for the continuous time case, it is necessary only to evaluate the WVD at time zero. Hence
WYL 09 =23 kY .23

where k(i) = s(i) s* (-i). Equation (23) can be evaluated using the discrete FFT algorithm.

In order to avoid a repetition in the time domain WVD, a weighting function[26] is added
to the tifne data before the evaluation process. Such process may decrease the resolution of the
distribution, but it will eliminate the repetition of peaks in the time domain, and, thus the

interpretation of the result will be substantially easier.

5.4. Description of Experimental Study
The experiment was performed on the spiral bevel gear fatigue test rig [48], as illustrated
in Figure 52, at the NASA Lewis Research Center. The primary purpose of this rig is to study

the effects of gear tooth design, gear materials, and lubricants on the fatigue strength of aircraft
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quality gears. Because spiral bevel gears are used extensively in helicopter transmissions to
transfer power between nonparallel intersecting shafts, the use of this fatigue rig for diagnostic
studies is practical. Vibration data from an accelerometer mounted on the pinion shaft bearing
housing was captured by an analog to digital conversion board. The 12-tooth test pinion, and the
36-tooth gear have a 35 degree spiral angle, a 1 in. face with, a 90 degree shaft angle, and 22.5
degree pressure angle. The pinion transmits 720 hp at a nominal speed of 14,400 rpm. The test
rig was stopped several times during the test for gear damage inspection. The test was concluded
at 17.8 operational hours when a breaken tooth was detected visually during one of the
shutdowns.

Pictures of tooth damage on the pinion at various stages in the test are shown in Figure
53. At the first rig shut-down, at about 5.5 hours into the test, a small pit was observed on one
of the teeth on the test pinion, as illustrated in Figure 53A. The test was stopped again at
approximately 12 hours and the pitted area spread to cover approximately 75% of the face of the |
pinion tooth, as seen in Figure 53B. In addition, pitting started to appear on the adjacent teeth.
Figure 53B shows the pinion at the end of the test, at 17.8 hours. It was found that one of the
three heavily pitted pinion teeth had experienced a tooth breakage, losing one third of the tooth,
as shown in the figure.

5.5. Discussions of Results
To study the effects of gear tooth pitting and wear on the dynamics of the rotor system,
the numerical simulation procedure described above was used to model the vibrations of the

pinion gear in the test rig. During the experimental study, vertical direction vibration signals
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Bearing forces
Figure 51. Schematic of the rotor-gear bearing Figure 52. Spiral bevel gear rig at NASA Lewis
system, Research Center.
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Figure 54. Stiffness changes in the gear mesh model.
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from the pinion gear are time synchronously averaged for spectral analysis and analysis using the
joint time-frequency distribution(WVD). In order to perform an accurate comparison, the
averaged time signal from the vertical vibration of the pinion gear is also generated using the
numerical model. During these simulations, approximate gear mesh stiffness models are
developed to simulated the effects of wear and pitting of the pinion tooth on the dynamics of the
system.

As it has been established, the changes due to gear tooth wear or failure can be
represented by the amplitude and phase changes in vibration, which, in turn, can be represented
by magnitude and phase changes in mesh stiffness[17,18]. To demonstrate the effects of mesh
stiffness change on gear vibration, the variation of the mesh stiffness model used for this study is
given in Fig 54. The "undamaged" configuration of the mesh stiffness is given by 0 degree phase
change(Fig. 54A), and 0% amplitude reduction(Fig. 54B).During the wear and pitting process,
two types of stiffness changes are examined, i.e., the phase changes, shown in Figure 54A, and
the amplitude changes, shown in Figure 54B. Figures 55 and 56 show the time, frequency, and
Joint time-frequency analysis(WVD) of the pinion gear vibration signals with the approximated
changes in gear mesh stiffness.

Figure 55 shows the effects of mesh stiffness phase changes in the WVD representation
of the predicted vibration signal. As seen in Figure 55, a phase change in the mesh stiffness at
the 6th tooth of the 12-teeth pinion resulted in a temporary increase of amplitude and phase of
the pinjon vibration time signal during the 6th tooth pass location. As the phase shift in the mesh
stiffness increases, from 1.5 degrees to 4.5 degrees, the changes in amplitude and phase in the

vibration signal become more pronounced. In the frequency spectra, this change in mesh stiffness
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will result in the increase of the amplitude in the sideband frequencies. However, as discussed

earlier, although the frequency spectrum provides good indications of the existence of the
non-synchronous components, it can not distinguish the time locations of their occurrences. The
joint time-frequency analysis using WVD, as indicated by the scale of shades given in Figure 55,
shows the existence of various frequency components as the pinion rotates through a complete
revolution of 360 degrees. Note that, in this case, the WVD shows a continuous excitation of the
mesh frequency (12 x rotational speed) throughout the complete 360-degree revolution while
subsynchronous components of 8 times, 4 times, and 1 times rotational speed are occurring at the
6th and 7th tooth pass locations.

Figure 56 shows the effects of reduction in mesh stiffness at the 6th gear location. With
the reduction of mesh stiffness, a substantial change in the vibration at the 6th tooth pass location
(150 - 180 degrees) is observed. Note that in the case of 50% stiffness reduction, the time
vibration amplitude at the 6th tooth pass location(at approximately the 180 degree location for the
12 teeth pinion) almost vanishes and a much larger amplitude at the 7th tooth pass location is
generated. In addition, the vibration amplitudes of the 8th and 9th tooth pass locations are
reduced. These reductions in vibration amplitudes at mesh frequency resulted in a much higher
sub-synchronous components in the frequency spectrum as shown in Figure 56C. The WVD
shows a distinct type of cross pattern at the intersection of the mesh frequency and the 6th tooth
pass location with a continuous mesh frequency component throughout the complete pinion
revolution.

Figure 57 shows the pinion gear vibration signature analysis of the experimental time

signal acquired at A) 12 hours when one tooth is severely pitted (Figure 53B), and B) 17.8
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hours, when three consecutive teeth are pitted and one has a tooth fracture (Figure 53C). To

numerically simulate these phenomena, two gear mesh stiffness models, as shown in Figure 58A
and 58B, which include a combination of phase shift and amplitude change, are introduced.
Figure 58A represents the gear mesh stiffness for a heavily pitted tooth during a single tooth
pass. The mesh stiffness is simulated by a 50% loss in stiffness at approximately first 20% of
contacting period. Figure 58B represent the mesh stiffness, for three tooth pass period, consisting
of one broken tooth with two heavily pitted teeth at the adjacent sides. Note that the stiffness of
the middle (broken) tooth is simulated by a 50% loss of stiffness at the first 40% of its contacting
period while the other adjacent(pitted) teeth are simulated by the stiffness reduction similar to
that of the single tooth case as shown in Fig. 58A. Additional frictional effects are also added
into the model to simulate the roughness of the tooth surface due to pitting. The simulated
vibration signature of the pinion gear is given in Figure 59. Comparing Figures 59A and 57a, for
the single tooth damage case at 12 hours, one may notice the similarities between both the
frequency spectra and the WVD display. Some of the unevenness in the experimental time signal
is mainly due to the modulation of frequencies due to other excitations in the test rig which are
not numerically modeled. For the tooth break-off case at 17.8 hours, Figures 57B and 59B, both
the numerical and the experimental WVD display a large cross pattern at the 6th tooth pass
location due to tooth break-off. However, some discrepancies have been detected between the
experimental and the numerical time signal at the 4th and 5th tooth pass locations. The
experimental time signal consists of some higher frequency, smaller amplitude vibration
modulation, which are not being numerically simulated. This additional modulated signal

resulted in the excitation of the 14 times rotational speed component, as shown in the frequency
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spectrum in Figure 57B, and, also, in turn, is responsible for the small differences created in the
WVD.

5.6. Summary and Conclusions
A numerical procedure has been developed to simulate the dynamics of gear transmission

systems with the effects of gear tooth damage due to wear and pitting. The work presented in this
paper can be summarized as follows:

1) A modal synthesis methodology has been developed to simulate the dynamics of gear
transmission systems. While the computational efforts has been greatly reduced by modal
transformation, the numerical results generated maintains good accuracy.

2) Gear tooth damage due to wear and pitting can be simulated by amplitude and phase changes
in the gear mesh stiffness model. The gear mesh model developed can easily be incorporated into
the global transmission system for dynamic predictions.

3) Using the time averaging technique, frequency spectrum analysis, and the Wigner-Ville
distribution, a signature analysis scheme can be developed to examine and characterize the
vibration signal of the gear system.
4) A parametric study of the effects on the vibration signal due to various changes in the gear
mesh stiffness model, simulating various degrees of pitting and wear damage, could provide a

comprehensive database for gear fault detection and damage estimation research.



CHAPTER 6
QUANTIFICATION OF GEAR TOOTH DAMAGE
BY OPTIMAL TRACKING OF VIBRATION SIGNATURE

6.1. Objective

In the last two decades, with demands for higher operating speeds and greater load
capacity, premature failures in high-performance turbomachinery have often resulted in
enormous financial losses and, at times, catastrophic consequences. In aeronautical applications,
where both weight and efficiency are pushed to their design limits, the prevention and
management of premature equipment failures is a vital part of the maintenance program. Current
onboard condition-monitoring systems for gas turbine engines often fail to provide sufficient
time between warning and failure for safety procedures to be implemented. On the other hand,
inaccurate interpretation of operating conditions may result in false alarms and unnecessary
repairs and downtime. The early detection of incipient failure in a mechanical system is of great
practical importance as it permits scheduled inspections without costly shutdowns and indicates
the urgency and locations for repair before a system incurs catastrophic failure.

Some success has been achieved in identifying damage in a gear transmission system by
using the Wigner-Ville distribution (WVD) technique as described in the previous chapters
[4,7,9,15]. The approach is to use statistical pattern recognition to match the WVD signature
patterns of damaged gears with standard patterns stored in a data base. Although the WVD
technique is useful for determining the type and location of the damage, it is not much help in

quantifying the level of damage. Damage quantification would logically be the next step in
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failure prediction; however, no explicit attempts at damage quantification have previously
appeared in the literature.

This chapter presents a new technique for processing vibration data to quantify the level
of damage in a gear transmission system. The technique consists of a nonlinear numerical
optimization in the form of an “optimal tracking” problem [56,57]. The optimization uses a
dynamic model of the gear mesh and forms an estimate of the time-varying mesh stiffness that
best corresponds to the given set of vibration data. The utility of the technique relies on the
relationship between the wear or damage of a gear tooth and the change in stiffness of the mesh
during a given tooth pass cycle. An analysis of this relationship demonstrates that the
perturbation of the stiffness function from the nominal profile can be used to quantify the level of
damage.

The optimal tracking technique for estimating the perturbation of the mesh stiffness was
tested in two settings. First, it was tested on a set of fictitious data generated by computer
simulation of a one-degree-of-freedom mechanical system with time-varying stiffness. The
solution of the optimal tracking problem matched very closely the actual stiffness profile used in
the model generating the data. Then, the technique was tested on a set of experimental data from
a gear test rig, but still assuming the one-degree-of-freedom model. Despite the simplicity of the
model the stiffness profile obtained was shown to be useful in correlating to the level of damage
of the gear transmission system.

This chapter is organized as follows: Sécfion 2 presents the system model and formulates

the optimal tracking problem. Section 3 outlines the numerical solution procedure for the
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nonlinear optimization. Section 4 presents and interprets the results of the optimization and

discusses the next steps to be taken in developing a comprehensive failure-prediction procedure.

6.2. OPTIMAL TRACKING PROBLEM

6.2.1 System Model

The system considered in this study consisted of a small pinion in mesh with a larger
gear. A simple model of this system has the two gear masses connected by a spring and a
damper. The larger gear is much heavier than the pinion; hence, it is assumed to be rigid, so that
all relative motion between the two is attributed to the motion of the pinion. Then, the equation

of motion of the pinion takes the form
mi + cx+ k(t)x=0 6.1)

where m is the mass of the pinion and k(¢) and c are the stiffness and damping of the mesh. The
mesh stiffness is not constant but is nominally a periodic function of the gear angle, with each
period corresponding to one tooth pass. The high points on the periodic stiffness function
correspond to gear angles where two pairs of gear teeth are in contact, and the low points
correspond to angles where only one pair is in contact.

It has been found in experiments on gearbox vibrations[7-9] that the gear mesh stiffness
changes with the wear, pitting, or fracture of the gear teeth. Such changes in the gear mesh
stiffness inevitably lead to changes in the vibration signatures of the mechanical system. The
objective of the optimal tracking procedure developed in this study is to reconstruct the true

stiffness profile for a damaged gear tooth from the measured vibration. That is, the objective is to
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determine the function (f) that would result in the measured vibration according to the system

model (6.1).

The true stiffness profile can be expressed as the sum of a constant (time averaged)
component, a nominal periodic component, and a perturbation resulting from gear wear or
damage. Accordingly, the system model (6.1) is written as

mi + Ck + [ Ky = Kpriote = Kpenrs ) 1x =0, 6.2)

or
£+ i+ Qx=udx, (6.3)
m

where 2 = kaye/m and u(?) represents the total time-varying component of the stiffness divided
by the pinion mass. By defining the variables
X, =X,x, =X, (6.4)

the system model can be written in the state-variable form

) c
Y= -—x -Q%x, + u(t)x, 65)
X, = X

with the given initial conditions
x,(t) = Xg, X(t)=X,. (6.6)

6.2.2 Optimization Problem
Suppose that a data set corresponding to the vibration of the pinion is collected over the

interval [fo,¢]. Let the function describing the data set be denoted as %,(7), since it corresponds to
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the modeled variable x; (r). The objective is to determine a reasonable time-varying stiffness
component «(¢) for which the model output x, (f) approximates the measured data %00 .

A diagram depicting the functional objective is shown in Fig. 60. In the figure u(f) is
depicted as an input to be chosen so that the error e(r) will be small for all time. Note that this
problem has the form of a tracking problem, where the control input of a system is designed so
that the system output follows a prescribed reference function. Such a problem may be
approached by using the standard techniques of optimal control theory[56,57]. In particular, the

“design” of a suitable function u(f) may be achieved by minimizing the quadratic cost functional
T=38,(x0)-%0)) +1 [{A(n0-%0) +pr0la,  62)

where fi, 5, and f are cost-function weighting coefficients. This form of the cost functional
penalizes the energy in the error between the modeled output and the measured data. It also
penalizes the use of too large a stiffness perturbation function in order to avoid singularity in the
solution.

In the optimal tracking problem the system dynamic equations (6.5) are treated as equality
constraints imposed in the optimization of the cost (6.7). As such, they are appended to the cost
function by using time-varying Lagrange multipliers A1(f) and Ay(f). These Lagrange multipliers
are themselves governed by differential equations called the costate equations. The costate
equations together with the state equations of the system model form a two-point boundary value

problem (TPBVP)[56,57]. The TPBVP equations are

¢ o= ~Zx —Q%, + u(t
(State equations) i 1 T xR U (6.8)

X, =X
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. A= —A, + £’?-1
(Costate equations) m 6.9
A, = 02'11 - u®)Ad, - Bi(x,(t) - %,(1))
(Stationarity condition) 0= Ax, + Bu(t) (6.10)
(Endpoint conditions)  x,(s,) = %, , X, (ty) = X, 6.11)

A(t)=0,4,(t,) = B,(x,(t,) - %,(¢,)). (6.12)
The TPBVP (6.8-6.12) represents a set of necessary conditions for u(?) to be the solution of the
optimal tracking problem. The TPBVP consists of a set of four coupled differential equations
(6.8-6.9), together with an algebraic relation (6.10), and some endpoint conditions (6.1 1-6.12) at
both £ and ¢ Notice that the TPBVP is nonlinear: the unknown function u(f) multiplies other

independent variables in the differential equations.

6.3. NUMERICAL SOLUTION PROCEDURE
The nonlinear TPBVP (6.8-6.12) is solved by an iterative procedure. A complete and
general derivation of the procedure is given in Sage[57] and Dyer and McReynolds [55]. Some of

the salient points are outlined below for convenience.

6.3.1 Successive Sweep Method

Solving the nonlinear TPBVP requires an iterative method. Although several approaches
are possible, a common and useful one is to begin with an initial guess #°(f) and use it to
integrate the nonlinear state equations (6.8) forward in time starting from the initial conditions

(6.11) to determine the nominal state functions x?(t) and xg(t). Then, starting from the final

conditions (6.12), integrate the nonlinear costate equations backward in time to determine the
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nominal costate functions 110(1) and ,120 (). The nominal functions uo(t), x?(r), xg(t), llo (), and
A3(r) then satisfy all the TPBVP equations except the stationarity condition (6.10).

The nominal state, costate, and input functions must be iteratively updated, so that they
will eventually satisfy all the nonlinear TPBVP equations, including the stationarity condition.
Each update is accomplished by solving a linearized version of the TPBVP. A standard method
for doing this is known as the sweep method, whereby a linear relationship between the state and
costate functions is assumed. Then, the linear TPBVP degenerates into a set of ordinary
differential equations with endpoint conditions at the final time only. These are solved by a
straightforward numerical integration. In the case of the optimal tracker these ordinary

differential equations take the form of the coupled Riccati equations

2

. c X
py=2 (; Pn—DPn)t plzl_z

B
. c 2 1 x;
P ="Py~Pun—Pn( -Q +u(t)-—Ax,) + p,p, (6.13)
m ﬁz ﬂz
' 1 x2 2‘2
Pn=-2p,( -Q? +u(t)“'ﬂ_zllxz ) + Plzz'ﬂ—zz“‘(ﬂl +ﬁ )
with endpoint conditions
Pn(tf)=P12(tj)=0a p22(tf)=ﬂf (6.14)

together with the auxiliary linear equations

]:‘1 =h ( %"'Pn‘x'z_ ) —h, —-p“é:-;—z(}l]xz + f,u(t))
2 2 (6.15)
2

i 2 1 2
hy=-h (- +u(t)—ﬂ—2/l,x2 —pu;—z ) - i—(l,xz + Bu())(pix, +4,)
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with the endpoint conditions
h (t;) = h,(t;,) = 0. (6.16)

Note that the x and A variables in the differential equations (6.13) and (6.15) fepresent the given
nominal functions. (The zero superscripts have been omitted for convenience.) They are simply
treated as time-varying coefficients in the numerical integration of the differential equations. The
solutions of equations (6.13) and (6.15) are then used to compute the cortections to the nominal

state, costate, and input functions. This computation requires yet another numerical integration,

this time of the linearized state equations

2

) c X 1 x2
Ax, =-Ax, ( ;“"Pn "f ) + Axy( -Q? +u(t)"’b‘2"1|xz _pu,—Bz_ ) -
PR A £22 (A%, + B,u(t)) (6.17)
1 ﬂz ﬂ2 172 2
Ax, = Ax,
with the zero initial conditions
AX,(t)) = Ax,(t,) = 0. (6.18)
Finally, the update of the nominal control is computed as
1
Au= ﬂi(a,x2 + Byu(t)) - ﬁ—(z,sz +%,(pyAx, + paAx, +h)), (6.19)
2 2

where ¢ is the step size, and the new nominal control is given by

£ =d () + AL (). (6.20)
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(The superscripts i and i+1 denoting the iteration number have been reinserted in equation
(6.20).) The procedure is repeated until the nominal functions converge to a solution.

The real scalar £ € [0,1] in equations (6.15), (6.17), and (6.19) is used as a “step size”
parameter. Using a smaller value of ¢tends to decrease the magnitudes of the corrections, thereby
improving the stability of the iterative procedure but slowing the convergence to the solution.

Using a larger value of ¢ has the opposite effects.

6.3.2 Numerical Details

The choices of the cost-function weighting coefficients 31, £, and Bf are important for
effective numerical optimization. The parameter 3] defines the penalty on the difference between
the calculated and reference vibration signals. Since the goal is to rﬁinimize the difference
between the calculated and tracked vibration signals, a large weighting coefficient 1 should be
chosen. The parameter f defines the penalty on the function u(f). Generically speaking, f;
should impose a lighter penalty on u(f) than 8] imposes on the tracking error. Note also that the
choice of units has an effect on the appropriate relative sizes of 81 and . In the examples
studied the numerical values of u(f) are considerably larger in magnitude than those of a
reasonable vibration-signal error; therefore, even if equal weighting between error and control
were desired, B, should be chosen to be considerably smaller than 8]. An inappropriately large
choice of the parameter f, would make the cost function almost unchanged from one iteration to

the next. Thus, a small constant value was chosen for the parameter ). The parameter Bf defines
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the penalty for the error at the final time. If A fis too small, a large vibration error at the final
time will result.

By following these general guidelines the optimization algorithm described in the
previous section was realized in a computer program. The equations were integrated with a
seventh-order Runge-Kutta-Fehlberg method. A summary of the programming steps is given

below :

0. Set i =0 and take the initial guess #0(¢) for the function u(r) to be zero.

1. Using the function »(¢) from the previous step, integrate the state equations (6.8) forward in
time. Calculate the resulting cost function J.

2. Integrate the costate equations (6.9) backward in time.

3. Use the computed state and costate variables as time-varying coefficients in the integration of
the Riccati equations (6.13) along with the auxiliary equations (6.15) backward in time.

4. Integrate the linearized state equations (6.17) forward in time. Using the linearized
stationarity condition (6.19), calculate the correction Aui(f) to the nominal function ul(f) and
hence the updated function ui*1(r). Also, calculate the new cost function Ji+1.

5. Make decisions about the continuation of the optimization procedure and the choice of the
parameters:

a. [f the difference between the calculated and tracked vibration signals is small, the
optimization procedure is finished.

b. If the difference Ji*1 - Ji<0is large enough, repeat from step 1.

c. If the difference Ji*1 — Ji < 0 is too small, increase the weighting f] and repeat from step

1.
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d. If J*1 > Ji, repeat from step 1 using a smaller value of the step size . If this is not

successful, increase the error weighting 5] and repeat from step 1.

Some comments should be made on step 5 of the numerical procedure. It was observed
that for given values of weighting coefficients and the step-size parameter the optimization
procedure converges to some value of the cost function. In this case the difference between the
values of the cost functions Ji*1 — Ji becomes negligible after some iterations. This means that
the cost associated with the control u(f) is becoming dominant. Therefore, it makes sense to start
a new iteration with an increased weight f] (i.e., imposing a higher penalty on the vibration

error).

6.4. DISCUSSION OF RESULTS

To demonstrate the optimal tracking procedure described above, two numerical cases
were used in this study. The first case was a numerical experiment in which the tracker was
applied to a set of vibration signals generated numerically, assuming a given gear mesh stiffness
profile. The mesh stiffness profile evaluated by the optimal tracker was compared with the
original stiffness used in generating the vibration signal. Figure 61(a) shows the comparison
between the vibration signal generated by a sinusoidal stiffness and that simulated by the optimal
tracker. As shown in the figure the two vibration signals were very similar; the small difference
between the two signals is given in Fig. 61(b). Figure 62(a) depicts the original gear mesh
stiffness used and the stiffness evaluated by using the optimal tracker; the difference between the

two stiffnesses is given in Fig. 62(b). The excellent agreement between the two stiffnesses in this
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numerical experiment has confirmed the applicability of the optimal tracking procedure in
evaluating system stiffness changes from system vibration signals. However, this close
resemblance between the generated and simulated signals was partly due to the original time
signals being smooth, continuous, and harmonic without any substantial change in magnitude
and phase over the gear revolution. To demonstrate the generality and limitation of the developed
procedure, a set of experimental data taken from é test rig was used in the next case.

The second case was based on the experimental data obtained from the spiral bevel gear
test rig shown in Fig. 63. The primary purpose of this rig is to study the effects of gear tooth
design, gear materials, and lubrication types on the fatigue strength of aircraft-quality gears [45].
Because spiral bevel gears are used extensively in helicopter transmissions to transfer power
between nonparallel intersecting shafts, using this fatigue rig for diagnostic studies is extremely
practical. Vibration data from an accelerometer mounted on the pinion shaft bearing housing
were captured by using a personal computer with an analog-to-digital conversion board and an
anti-aliasing filter. The 12-tooth test pinion and the 36-tooth gear have the following
characteristics: 0.5141 in pitch, 35° spiral angle, 1-in. face width, 90° shaft angle, and 22.5°
pressure angle. The pinion transmits 720 hp at a nominal speed of 14 400 rpm. The test rig was
started and stopped several times for gear damage inspection. The test was ended at 17.72
operational hours when a broken portion of a tooth was found visually during one of the
shutdowns.

Figure 64(a) depicts the gear tooth aﬁer 6.5 hr of operation. Note that there is heavy
surface pitting on one gear tooth with minor pitting on the next tooth. Figure 64(b) shows the

time domain averaging, the frequency spectrum, and the joint time-frequency analysis using the
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Figure 64. (a) Photograph of damaged gear at 6.55 hr. (b) Gear vibration signal at 6.55 hr,
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Wigner-Ville distribution (WVD) [4,7-9,15] of the accelerometer signal at 6.5 hr[9]. Note that in
Fig. 64(b) the time signal indicates a large vibratory signal during the engagement of the sixth
and seventh teeth (damaged teeth), but the frequency spectrum, because of its averaging
characteristics, shows very little change from the original signal [9]. The WVD begins to show a
pattern of shifting of the major frequency component (at a mesh frequency of 2880 Hz) around
the meshing of the sixth and seventh teeth. The WVD pattern in this case is very similar to those
resulting from a short-term amplitude and phase change of a vibration signal. Although it has
been established by the authors in some previous publications [7-9] that such damage in the gear
can be identified by the WVD pattern recognition process, the level of the damage has not been
addressed. A recent study by the authors has shown that wear and surface pitting of the gear tooth
usually will result in a phase shift in the stiffness profile, without any significant change in the
stiffness magnitude. Figure 65 shows the stiffness change in a gear mesh evaluated [10] from
gear tooth surface profile variations. Note in Fig. 65(b) that increasing surface profile variation
increases the phase shift of the gear stiffness without changing the magnitude of the stiffness.
Incorporating this constant gear mesh stiffness as an additional constraint, the optimal
tracking procedure was applied to the experimental vibration signal (obtained from the bevel gear
test rig at 6.5 hr as shown in Fig. 64) to evaluate the corresponding gear mesh stiffness. To better
evaluate the gear mesh stiffness, the time signal was filtered at a mesh frequency of 2880 Hz.
Figure 66(a) shows the comparison between the unfiltered experimental signal and the optimal
tracker simulation, and Fig. 66(b) shows the comparison between the filtered experimental signal
and the tracker-simulated signal. Note that because of the substantial change of magnitude and

phase of the time signal during the data acquisition period (one revolution of the gear), the
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accuracy in the simulated vibration is not as good as that in the numerical experiment (Fig.
61(a)). Figure 67 depicts the gear mesh stiffness evaluated by using the optimal tracker. Note
that in the evaluated stiffness considerable phase shifts at several gear teeth resulted in the large
variation in magnitude and phase of the vibration signal. At the location where pitting occurred
(teeth 6 and 7) the phase shift of the stiffness was more pronounced. By using the results from
the evaluated mesh stiffness and the correlation of stiffness change with gear wear shown in Fig.

65(b), the gear damage can be estimated.

6.5. CONCLUSIONS

This chapter presents a unified approach to identifying and quantifying damage in a gear

transmission system. The conclusions from this study are as follows:

1. The application of the joint time-frequency technique called the Wigner-Ville distribution
provides the ability to identify the types and locations of the gear damage.

2. The optimal tracker developed in this chapter provides a very reasonable estimate of the
stiffness change due to damage, which can be related to the level of gear damage.

3. For vibratory signals with large changes in magnitude and phase angle the accuracy of the
simulated signal from the optimal tracker may decrease.

4. For a more accurate evaluation of system mesh stiffness an optimal tracker for the complete

dynamic model of the system is needed.
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CHAPTER 7

GENERAL CONCLUSIONS

During this study, a numerical procedure has been developed to simulate the dynamics of
gear transmission systems with the effects of gear tooth damage due to wear and pitting. The
numerical procedure developed consists of (a) a numerical model to simulate the gear mesh
stiffness change resulting from gear tooth damage due to surface pitting and wear, (b) a modal
synthesis methodology to simulate the dynamics of gear transmission systems, (c) a joint time-
frequency analysis using the Wigner-Villle distribution (WVD) method to provide a
comprehensive representation of the vibration signature for fault detection, and (d) the use of an
optimal tracker to quantify the damage in the gear tooth. The developed numerical procedure was
verified by comparison with vibration data from a damaged gear obtained at the NASA Lewis
Research Center. The specific accomplishements in this project can be summarized as follows:

1. A method has been developed to simulate the effects of tooth surface wear in a gear
transmission system. The tooth surface wear level can be controlled by adjustment of both

amplitude and length in the tooth profile modification.

2. Using the developed gear tooth damage model, tooth damage due to wear and pitting can be

simulated by amplitude and phase changes in the gear mesh stiffness model. The gear mesh
model developed can easily be incorporated into the global transmission system for dynamic

predictions.

3. A numerical procedure has been developed to simulate the vibration in a gear transmission

system with effects of gear tooth damage due to wear and pitting. The modal synthesis

methodology was used for simulating the dynamics of gear transmission systems. The gear
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mesh model developed to simulate the gear tooth damage due to wear and pitting are

incorporated numerically into the global system for dynamics predictions.

. The Wigner-Villle distribution (WVD) method used for the joint time-frequency analysis
provides a comprehensive representation of the vibration signal. It was successfully used to
verify the numerical model developed.

. Based on the results of the application of the various time and frequency analysis techniques, it
can be concluded that the WVD provides vital information concerning both the severity and the
location of the pitting process in the gear system. The fracture of the gear tooth and its exact
location can be pinpointed using the WVD technique. However a machine vibration signature
database is required to interpret the resulting WVD.

. A parametric study of the effects on the vibration signal due to various degrees of pitting and
wear damage, has provided a comprehensive database for gear fault detection and damage
estimation research.

. A parametric study of the effects on the vibration signal due to various changes in the gear
mesh stiffness model, simulating various degrees of pitting and wear damage, could provide
a comprehensive database for gear fault detection and damage estimation research.

. The optimal tracker developed in this chapter provides a very reasonable estimate of the
stiffness change due to damage, which can be related to the level of gear damage. For
vibratory signals with large changes in magnitude and phase angle the accuracy of the
simulated signal from the optimal tracker may decrease. For a more accurate evaluation of

system mesh stiffness an optimal tracker for the complete dynamic model of the system is

needed.
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APPENDIX

LISTING OF COMPUTER PROGRAM
FOR
DYNAMIC SIMULATION



“Chikkkkkkkkrktk VLADIMIR V. POLYSHCHUK kkhkkhkkkhhhhkhkhhkhkhhkhhhkkhkkhkkhkkC
Crkkxkikkkkkt poly@fcalpha.mechanical.uakron.edu *#*ikikkkkkhkkkhkhkhkkC
P lkkkkkkkkkkkkkhkrkkkkx  JULY 20, 1995 hkkhkkhkkhhkhkhhhhkhhkkhhrkkkkhQ
ekkkkkhkhkkkhkhkkhkkhkkk Gear Analysj_s Program **kkkkkkikkhkkhkhkkrkkhhkC
C* NEW DEVELOPMENT CYCLE AS A TRANSITION TO PC WINDOWS C++ PROGRAM C
Thhhkkhkhhhhkhhhhhhhkhhhhhhhhkhhkkkhkkkrkkhkkkkhkdk kO
Dhkkkkkkhkhkkkkkhkkhhhhhhkhhhkkhhkkkhkkkhhkkhkhhhkkkkd k(O
S OkkkkkkhhhhhhkhhhhhkhhhhhkkhhhkhkhhkkhhkkhhhkkhkhkhkkkC
Chkhkkkkkkhkkkhhkk GUANGHUI XU *hkkkhhhkhhkhhhhhhhhhhhkhkhhrhrkkhkkkhkkhrC
Shkkkkkkkhkkhkikkk JUNE 7, 1996 *kkkhkkkhhkhhhhhhhhhhhhhkhhkhkkhkkhkkxC
Skkkkkkkkkkkkkkk MODIFIED TO INCLUDE DAMAGED GEAR CASE *kkkkxkkk*(
TCkkkkkkhkkkhhhkhhhhhhhhhhhhkhhhhdkhhhhhhhhhrhhkhhhhdhhhhhkhhhhkkkkkkrhdC
ChhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhhhhhkhhrhhhhkhhhhrkkrhrkhhkhrkkxC
ShhhkkkkhhhhhkhkhhhkhhhhkhhhkkhhkhhkhhhhkhhhkhhhhhhkhhhkkhkhhkkkkkkhhkkhkhkC

PROGRAM GAPD

PARAMETER N50=50
PARAMETER N20=20
PARAMETER N10=10

—

CHARACTER*30 DATA_FILE(N50), FSTAT(N50)
- CHARACTER*30 FILE_OUT (NS0)
& CHARACTER*30 NAME
- CHARACTER*1 A,B

INTEGER NROT, NGEARS, NOBOX, NOMODE, ICOUNT
_ INTEGER NMODE (N50)
= INTEGER NUNIT(N50) ,NSTAT(N50)
INTEGER NBEAR(N10), LBEAR(N10,N10)
— INTEGER NCON_BEAR(N10,N10,N10,N10)
INTEGER LONG
INTEGER NUM, NSWITCH(N10)
REAL STIF2(N10,N10,6,6),STIFA(N10,N10,6,6)
REAL DAMP2(N10,N10,6,6)
REAL SHAPE(N50,N50,N50,4)
REAL FREQ(N10,N10,N10)

{8

I
[N

.[Z‘H

Cdkkkkkkkkhkkkkhhkhhkhhkkhkhhkrhkhhkhhkhhkhkkhkhkhkkkhhhhkhk kA hhkkkkhkhhkhkkkkrkk k%O
l OPEN (9,FILE=’menu.dat’,STATUS='OLD’)

= DO 100 I=1,N10
- 100 NSWITCH(I)= 0

— DO 10 I=1,N50
B NUNIT(I)=9 + I
~10 CONTINUE

ICOUNT= 0
READ (9, *)
READ (9,*) NROT
READ (9, *)
READ (9,*) NGEARS
READ (9, *)
* ENTER FILE WITH SHAFT DATA *C
READ (9,15) DATA_ FILE(ICOUNT+1)
FSTAT (ICOUNT+1)=70LD’
READ (9,*) '
* ENTER FILE WITH GEAR DATA *C
READ (9,15) DATA_FILE(ICOUNT+2)
— FSTAT (ICOUNT+2)=70LD’"’
T* ENTER FILE WITH BOX DATA *C
READ (9, *)
READ (9,*) NOBOX
IF ( NOBOX .EQ. 1 ) THEN
READ (9, *)
_ READ (9, *)
— ICOUNT= ICOUNT - 1

ol 1l LI

lolLHW



T30

(T

(e

ELSE
READ (9, *)

READ (9,15) DATA_FILE(ICOUNT+3)
FSTAT (ICOUNT+3) =70LD’

ENDIF

READ (9, *)

READ (9,*) NOMODE

READ (9,*)

READ (9,15) DATA FILE(ICOUNT+4)
READ (9,%)

READ (9,15) DATA_FILE (ICOUNT+5)

IF ( NOMODE .EQ. 1 ) THEN
FSTAT (ICOUNT+4 ) =’ NEW’
FSTAT (ICOUNT+5) =’NEW’
ELSE

FSTAT (ICOUNT+4) =’OLD’
FSTAT (ICOUNT+5) =/ OLD’
ENDIF

DATA_FILE (ICOUNT+6)='input.out’
FSTAT (ICOUNT+6)= ’NEW’

NCOUNT=ICOUNT+6
DO 30 I=1,NCOUNT

OPEN (NUNIT(I) ,FILE= DATA_FILE(I),STATUS= FSTAT(I) )
CONTINUE

READ (9, *)
READ (9,15) FILE_OUT(1)

READ (9, *)
READ (9,*) NUM .

READ (9,*) ( NSWITCH(I),I= 1,NUM )

WRITE (NUNIT (NCOUNT) ,*) ( NSWITCH(I),I= 1,NUM )

Ehkekkhhhhhkhhhkhkhhkh kR kAR AR R AR AR R AR ARR AR ARk k kR kA kAR A Ak k> QO
‘Crikkkkkk END OF MENU INPUT *kkkkkkkkkkhhhhhhhhkkkkkkhkkk k(O
c*******************************************************c

(!

- 32
33

finmgt
bl i

o

tI

{ne

DO 32 I=2,LEN(FILE OUT(l))
IF( FILE “ouT(1) (I-1:I) .EQ. ’ / ) THEN

CONTINUE
CONTINUE

DO 35 I=1,NGEARS

IF( I .LT. 10 ) THEN

A= CHAR(48+I) r

NAME= FILE_OUT(1) ‘

OPEN (NUNIT(NCOUNT+I), FILE— NAME (:LONG)//’.’//A,
STATUS='NEW’)

ELSE

K= INT(I/10)

J= MOD(I,10)

A= CHAR(48+K)

B= CHAR(48+J)

NAME= FILE OUT(1)

OPEN (NUNIT (NCOUNT+I),FILE= NAME/(: LONG)//’ '//A//B,

TATUS='NEW’)
ENDIF
CONTINUE

FORMAT (1X, 254 )



-é*********************************************************************C

CALL LAT (NUNIT,NCOUNT,NROT,NSTAT,NBEAR, LBEAR,STIF2,
. & DAMP2,STIFA, FREQ SHAPE NMODE NCON BEAR NSWITCH)
,‘*********************************************************************c

IF( NSWITCH(2) .EQ. 1 ) STOP

CALL MOTION (NUNIT,NCOUNT,NROT,NSTAT, NBEAR, LBEAR,STIF2,
- & DAMP2,STIFA,FREQ,SHAPE, NMODE NCON_ BEAR NSWITCH)
C*********************************************************************C

: END
Cvkkkkkkkhkhkkkhkhkhkhkhkkkkhkkhkkkhhhkkhkhkhhkhkhhhkhkhkkhkkhkkkkkkhhkkkkkkkkxkkkk*C
- SUBROUTINE MOTION (NUNIT, NCOUNT,NROT,NSTAT,NBEAR, LBEAR,STIF2,

& DAMP2,STIFA,FREQ,SHAPE,NMODE,NCON_BEAR, NSWITCH)

PARAMETER NONE= 1
PARAMETER UNBAIL= 2
PARAMETER BEAR= 3
. PARAMETER GEAR= 4
had PARAMETER EXTERN= 5

PARAMETER ROTOR= 1
: PARAMETER CASING= 2
- PARAMETER GROUND= 3

PARAMETER N50=50

PARAMETER NROT_SIZE=10

PARAMETER N10=10

PARAMETER N20=20

- PARAMETER N30=30

~— PARAMETER N120=120
PARAMETER N500=500
PARAMETER N5=5

- PARAMETER N140=140

- PARAMETER PI= 3.14

- 1* OLD_VARIABLES *C
INTEGER NROT

REAL SHAPE(N50,N50,N50,4)
REAL FREQ(N10,N10,N10)

QAN

ar o
[

REAL FTEMP(N10,N10,N10)

INTEGER NMODE (N50)
INTEGER NUNIT(N50), NSTAT(N50)
INTEGER NCOUNT

C

INTEGER NBEAR(N10), LBEAR(N10,N10)
INTEGER NGEAR(N10), LGEAR(N10,N10)
INTEGER NCON BEAR(N10,N10,N10,N10)
INTEGER NCON_GEAR(N10,N10,N10,N10)

e

o

INTEGER NSWITCH (N10)
REAL STIF2(N10,N10,6,6), STIFA(N10,N10,6,6)
REAL DAMP2(N10,N10,6,6)

n
i

I

INTEGER NFACT,NPOINTS,NCALC,NCYCLE,NCYCLE_TRAN
INTEGER NUNBAL(NZO), ISTAT UN(NZO N20)
INTEGER NUNIT OUT(NZO N20)

ol

REAL FSAMPLE, TCYCLE(N20)
REAL UNBX(N20,N20), UNBY(N20,N20), PHIADD(N20,N20)

«.* NEW VARIABLES *C
C* GLOBAL VARIABLES *C
— INTEGER NODE TABLE(N20 5,N50)
H INTEGER CLASS TABLE(NZO N20)



INTEGER NODE_CON (N50,N50)

INTEGER CLASS_NODE (N50)
. INTEGER CLASS_NAME (N50)
- INTEGER NODE_LOC(N50)

REAL SHAPE_NODE (N50,N20,6)
, REAL STIF_BEAR(N20,6,6), DAMP_BEAR(N20,6,6)
- REAL STIF_AV(N20,6,6)
REAL XN(N20,N20,6), VN(N20,N20,6), AN(N20,N20,6)
REAL XNP(N20,N20,6), VNP(N20,6N20,6), ANP(N20,N20,6)
, REAL FBEAR(N20,N20,6)
- REAL FGEAR(N20,N20,6)
REAL FUNB(N20,N20,6)
REAL TORQUE (N20), FEXT(N20,N20,6)

REAL AMPIL,_ PHASE (N50, 3)
REAL ANGUTA (N20,2)
REAL TIME, DELTAT

INTEGER YES_NO, NL

INTEGER ITYPE, NTYPE, NTYPE GLOBAL, NTYPE_STIF
INTEGER NPOINT (N20)

INTEGER ITYPE DAM(N50,N50)

- REAL AGEAR(N20,N20,N10), AGSTIF(N20,N120)
REAL STIF GEAR(N20,N120)

REAL TMR(N20,3,3)

REAL ACUR(N20)

REAL GEAR_STIF

f

o

e ‘
c AMPL= AMPIL,_PHASE (INODE,1)
e PHASE= AMPL_PHASE (INODE, 2)
=2 PHIADD= AMPI, PHASE (INODE, 3)

(

C******** INITIALIZATION NCON GEAR TABLE hhkdkdkhkhkhkhkhkhkkhkkkkhkkhkhhkkhkkkkkikx(C
- DO 5 IROT=1,NROT .

DO 5 IGEAR=1,NGEAR(IROT)

DO 5 JROT=1,NROT

DO 5 JGEAR=1,NGEAR (JROT)

NCON_GEAR(IROT, IGEAR,JROT,JGEAR)=0
5 CONTINUE

Q!

(e

7Q**********************************************************************C

_lkkxkkkkxkx** INPUT GEAR DATA OF THE ROTOR-BEARING SYSTEM *kkkkkkkkkkk+C
LC**********************************************************************C
INODE= 1
JCHECK=0
READ (NUNIT(2),*)
READ (NUNIT(2),*)
READ (NUNIT(2),*) NCYCLE, NCYCLE_TRAN, NPOINTS, NFACT
READ (NUNIT(2),*)
READ (NUNIT(2),*) NROT
10  READ (NUNIT(2),*)
READ (NUNIT(2),*) IROT
READ (NUNIT(2),*) ;
READ (NUNIT(2),*) ANGULA(IROT,1), ANGULA(IROT,2)
READ (NUNIT(2),*)

guerorey

I

(!

READ (NUNIT(2),*) NUNBAL(IROT)

DO 500 I=1,NUNBAL(IROT)

READ (NUNIT(2),*) ISTAT UN(IROT,I),

& UNBX (IROT,I), UNBY(IROT,I), PHIADD(IROT,I)

Bl

o

WRITE (NUNIT(NCOUNT),*) ‘IROT /,IROT,’ NUNBAL ‘, NUNBAL(IROT),
& ' UNBX ’,’ UNBY’
WRITE (NUNIT(NCOUNT),*) UNBX(IROT,I), UNBY(IROT,I)

[



500 CONTINUE

READ (NUNIT(2),*) '
READ (NUNIT(2),*) NODE LOC(INODE), TORQUE(IROT)
CLASS TABLE(IROT EXTERN)= 1

NODE_TABLE (IROT, EXTERN, 1)— INODE

, CLASS_NODE (INODE) = IROT

- INODE= INODE + 1

READ (NUNIT(2),
READ (NUNIT(2), *) CLASS_TABLE (IROT, NONE)
- DO 505 INONE= 1, CLASS_TABLE (IROT, NONE)
READ (NUNIT(2),*) ILOC
NODE_LOC (INODE) = ILOC
NODE_TABLE (IROT, NONE, INONE) = INODE
CLASS_NODE ( INODE) =IROT
INODE= INODE + 1
505 CONTINUE

JCHECK=JCHECK+1
IF ( JCHECK .LT. NROT ) GOTO 10

- READ (NUNIT(2),*) :
READ (NUNIT(2), *) YES NO
IF( YES_NO .EQ. 0 ) GOTO 510

~ WRITE (NUNIT(NCOUNT), *)
WRITE (NUNIT(NCOUNT),*) ’ GEAR DATA INPUT ’
WRITE (NUNIT (NCOUNT), *)

JCHECK=0
515 READ (NUNIT(2),*) '
] READ (NUNIT(2),*) IROT
3 READ (NUNIT(2),*)
READ (NUNIT(2),*) NGEAR(IROT)
— DO 520 IGEAR= 1,NGEAR(IROT)
READ (NUNIT(2),*) LGEAR(IROT,IGEAR)
- WRITE (NUNIT(NCOUNT),*) LGEAR(IROT,IGEAR)
READ (NUNIT(2),*) ( AGEAR(IROT,IGEAR,I), I=1,5 )
T WRITE (NUNIT(NCOUNT),*) ( AGEAR(IROT,IGEAR,I), I=1,5 )
520 CONTINUE

JCHECK=JCHECK+1
IF ( JCHECK .LT. NROT ) GOTO 515

(!

WRITE (NUNIT(NCOUNT),*) ’/ GEAR CONNECTION TABLE '
WRITE (NUNIT(NCOUNT),*) ’ IROT IGEAR JROT JGEAR
& ITYPE_CON ’

READ (NUNIT(2),*)

READ (NUNIT(2),*) NL

i

& DO 525 I= 1,NL
= READ (NUNIT(2),*) IROT, IGEAR, JROT, JGEAR, ITYPE

NCON_GEAR (IROT, IGEAR, JROT, JGEAR) = ITYPE
. NCON_GEAR (JROT, JGEAR, IROT, IGEAR) = NCON_GEAR (IROT, IGEAR, JROT,JGEAR)
= WRITE (NUNIT (NCOUNT) ,*) IROT, IGEAR, JROT, JGEAR, ITYPE
cc NCON_GEAR (IROT, IGEAR, JROT , JGEAR)

= 525 CONTINUE
i READ (NUNIT(2),*)
= READ (NUNIT(2), *)

s JCHECK=0
- READ (NUNIT(2), *) NTYPE_STIF, NTYPE_DAM
530 READ (NUNIT(2),*)
READ (NUNIT(2),*) ITYPE
READ (NUNIT(2),*) NL, !AGSTIF (ITYPE,1) ,AGSTIF (ITYPE, 2)

A



- AGSTIF (ITYPE,3)=0.0
NPOINT (ITYPE)= NL
READ (NUNIT(2),*) (AGSTIF(ITYPE,3+I),STIF_GEAR(ITYPE,I),I=1,NL)

WRITE (NUNIT(NCOUNT),*)
WRITE (NUNIT(NCOUNT),*) ’ DATA FOR GEAR TYPE ’,ITYPE
WRITE (NUNIT(NCOUNT),532)

— & (AGSTIF (ITYPE,3+I),STIF_GEAR(ITYPE,I),I=1,NL)

532 FORMAT(1X, 2F20.4 )

- JCHECK= JCHECK + 1
IF ( JCHECK .LT. (NTYPE STIF+NTYPE_DAM) ) GOTO 530

_ NTYPE GLOBAL=1
- NTYPE= NTYPE STIF + NTYPE GLOBAL
READ (NUNIT(2),*) '

- DO 535 ITYPE=1,NTYPE
READ (NUNIT(2),*
READ (NUNIT(2),*) ((TMR(ITYPE,IROW,JCOL),JCOL=1,3),IROW=1,3)

- WRITE (NUNIT(NCOUNT), *)
WRITE (NUNIT(NCOUNT),*) ‘DATA FOR COORD. TRANSFORM TYPE ’,ITYPE
WRITE (NUNIT(NCOUNT),533)
& ( (TMR (ITYPE, IROW,JCOL) ,JCOL=1,3) , IROW=1, 3)
— 533 FORMAT( 1X, 3F10.4 )

535 CONTINUE

‘E**************************************C

nx*%*% START READING GEAR DAMAGE MODEL *C
DO 1999 I=1,NTYPE
DO 1999 J=1,N30
NDAM(I,J)= I

1999 CONTINUE

\d

\:J (@] JJ“

READ (NUNIT(2),*
READ (NUNIT(2),*) NTYPE DAM
READ (NUNIT(2),*)
WRITE (NUNIT(NCOUNT),*) ’ DAMAGE MODEL ’
DO 2200 I=1,NTYPE_ DAM
READ (NUNIT(Z) *) ITYPE,ITER, NEW_ITYPE
NDAM(ITYPE, ITER )= NEW ITYPE
WRITE (NUNIT(NCOUNT),*) ITYPE,ITER,NDAM(ITYPE, ITER )
C 2200 CONTINUE
- JCHECK = 0
;;C write(66,*) ’before reading of damage’
— 1050 READ (NUNIT(2),*
READ (NUNIT(2),*) ITYPE,NTEETH
o DO 1000 I=1,NTEETH
- ITYPE DAM(ITYPE I) = ITYPE
1000 CONTINUE

L.oalllao

ale: write(66,*) ’before reading of ndam’
= READ (NUNIT(2),*) NDAM
= WRITE (NUNIT (NCOUNT) , *)

WRITE (NUNIT (NCOUNT),*) ‘DAMAGE DATA FOR GEAR TYPE’,ITYPE

- WRITE (NUNIT (NCOUNT),*) ‘ITEETH ITYPE DAM’, ’/ NDAM ’/, NDAM
s IF ( NDAM .LE. 0) GO TO 1020
- DO 1010 I=1,NDAM '

READ (NUNIT(2),*) ITEETH, ITYPE_IDAM

ITYPE DAM(ITYPE ITEETH) = ITYPE_IDAM

WRITE(NUNIT(NCOUNT) *) ITEETH, ITYPE DAM(ITYPE,ITEETH)
1010 CONTINUE ‘
1020 JCHECK = JCHECK + 1

IF (JCHECK .LT. NTYPE_STIF) GO TO 1050

|

e

(T

il



‘E*********************************************************************C

-~-* END OF GEAR INPUT DATA FROM ABASE.DAT *C
510 CONTINUE

kkkkhkhkkkhkhkhhkhkhhkhkhkhkhhkhkhhkhkhhhhkkhhhkhkhkhkhkhhkhkhhhkhkkhkhkihkhkkk(C
‘U**************************#*****************************C
DO 700 IROT=1,NROT '
DO 700 IMODE=1,NMODE (IROT)
_ FTEMP (IROT, IMODE, 1) = FREQ(IROT,IMODE,1)*0.1047195
FTEMP (IROT, IMODE, 2)= FREQ(IROT,IMODE,1)*0.1047195
FTEMP (IROT, IMODE, 3)= FREQ(IROT,IMODE,1)*0.1047195
FTEMP (IROT, IMODE, 4)= FREQ (IROT,IMODE,1)*0.1047195
_ FTEMP (IROT, IMODE, 5)= FREQ (IROT,IMODE,3)
FTEMP (IROT, IMODE, 6)= FREQ(IROT, IMODE,4)
700 CONTINUE

- WRITE (NUNIT (NCOUNT) , *)

- DO 710 IROT=1,NROT
5 DO 710 IMODE=1,NMODE (IROT)
= DO 710 ICOORD=1,6

FREQ (IROT, IMODE, ICOORD) = FTEMP (IROT, IMODE, ICOORD)

WRITE (NUNIT (NCOUNT) ,*) ’ FREQ ’/, FREQ(IROT,IMODE, ICOORD)
710 CONTINUE

WRITE (NUNIT (NCOUNT) , *)

f********************************************************C

~* TABLES FOR CLASSES AND NODES *C
C* NODE NUMBERING *C

WRITE (NUNIT (NCOUNT) ,*)’ INODE, IROT, NODE_LOC (INODE) ’
- WRITE (NUNIT (NCOUNT) , *)

DO 650 IROT= 1,NROT

WRITE (NUNIT (NCOUNT) ,*) / BEARINGS NUMBERING '
n* NODE NUMBERING FOR BEARINGS
CLASS_TABLE (IROT, BEAR) = NBEAR(IROT)
- DO 660 IBEAR=1,NBEAR (IROT)
NODE_TABLE (IROT, BEAR, IBEAR)= INODE
CLASS_NODE (INODE)= IROT
NODE_LOC (INODE) = LBEAR (IROT, IBEAR)
- WRITE (NUNIT (NCOUNT),*) INODE, IROT, NODE_LOC (INODE)
INODE= INODE + 1
660 CONTINUE

| 3| 4
= WRITE (NUNIT (NCOUNT), *) ’ GEARS NUMBERING ’
.0* NODE NUMBERING FOR GEARS
= CLASS_TABLE (IROT,GEAR)= NGEAR(IROT)
= DO 665 IGEAR=1,NGEAR (IROT)
NODE_TABLE (IROT, GEAR, IGEAR) = INODE
CLASS_NODE (INODE)= IROT
NODE_TLOC (INODE) = LGEAR (IROT, IGEAR)
= WRITE (NUNIT (NCOUNT),*) INODE, IROT, NODE_LOC(INODE)
INODE= INODE + 1
665 CONTINUE
- WRITE (NUNIT (NCOUNT),*) ’/ UNBALANCE NUMBERING ’
r* NODE NUMBERING FOR UNBALANCE
CLASS_TABLE (IROT,UNBAL)= NUNBAL(IROT)
- DO 670 IUNB=1, NUNBAL(IROT)
NODE_TABLE (IROT , UNBAL, IUNB) = INODE
CLASS_NODE (INODE)= IROT
NODE_TOC (INODE)= ISTAT UN(IROT, IUNB)



AMPL_PHASE (INODE,1)= SQRT( UNBX(IROT,IUNB)*

: & UNBX (IROT, IUNB) +

o & UNBY (IROT, IUNB) *UNBY (IROT, TUNB)
AMPIL,_PHASE (INODE,2)= ATAN2 (UNBY (IROT, IUNB) ,UNBX(IROT, IUNB))
AMPL_PHASE (INODE, 3)= PHIADD (IROT, TUNB)

— WRITE (NUNIT (NCOUNT) ,*) INODE, IROT, NODE_LOC(INODE)
INODE= INODE + 1
670 CONTINUE

T 650 CONTINUE
NNODE= INODE-1

--* CHECK
NNODE= INODE-1 _
DO 222 INODE2=1,NNODE'
- WRITE (NUNIT (NCOUNT) ,223) ( AMPL_PHASE(INODE2,I),I=1,3 )
“-223 FORMAT( 1X, 3( E15.7,1X ) )
222 CONTINUE

_'* CAN BE MODERNIZE TO RESEMBLE CASING FROM ROTOR

DO 652 IROT=1,NROT
: CLASS_NAME (IROT) = ROTOR
. 652 CONTINUE - ,

WRITE(NUNIT(NCOUNT),*)
WRITE (NUNIT (NCOUNT),*) ’ NNODE = ’, NNODE
“* MODE SHAPES

DO 620 INODE=1,NNODE
IROT= CLASS_NODE (INODE)
- ILOC= NODE_TOC (INODE)
DO 620 IMODE=1,NMODE (IROT)
SHAPE_NODE (INODE, IMODE, 1) = SHAPE (IROT, IMODE,ILOC,1)
SHAPE_NODE (INODE, IMODE, 2) = SHAPE (IROT, IMODE,ILOC, 2)
SHAPE_NODE (INODE, IMODE, 3) = SHAPE (IROT, IMODE,ILOC, 1)
SHAPE_NODE (INODE, IMODE, 4) = SHAPE (IROT, IMODE, ILOC, 2)
SHAPE_NODE (INODE, IMODE, 5) = SHAPE (IROT, IMODE, ILOC, 3)
SHAPE_NODE (INODE, IMODE, 6) = SHAPE (IROT, IMODE, ILOC, 4)

I

{

WRITE (NUNIT (NCOUNT) ,*) / INODE /, INODE
WRITE (NUNIT (NCOUNT) , 622) (SHAPE_NODE (INODE, IMODE, I) ,I=1, 6)
620 CONTINUE

fa i

I

WRITE(NUNIT(NCOUNT),*)

WRITE (NUNIT (NCOUNT),*) ’/ INODE IROT 1LoC !
DO 630 INODE=1,NNODE

IROT= CLASS_NODE (INODE)

ILOC= NODE_TOC (INODE)

WRITE (NUNIT (NCOUNT) ,*) INODE,’ /,IROT,’ ’,ILOC
630 CONTINUE

{

b

{i

;************************************************************c

T* NODE CONNECTIONS FOR BEARINGS *C
WRITE (NUNIT (NCOUNT) , *)
= WRITE (NUNIT (NCOUNT) ,*) ’ NODE CONNECTIONS '’
WRITE (NUNIT (NCOUNT) , *) / INODE JNODE ICON
ICON=1

DO 621 IROT=1,NROT
~* NODE CONNECTIONS FOR BEARINGS

DO 621 IBEAR=1,NBEAR(IROT)
- DO 629 JROT=1,NROT

IF( JROT .GT. IROT ) GOTO 629



DO 629 JBEAR=1,NBEAR(JROT)

IF( NCON_BEAR(IROT,IBEAR,JROT,JBEAR) .EQ. 1 ) THEN
- INODE= NODE_TABLE (IROT, IBEAR, IBEAR)
NODE_CON (INGDE, 1) = 1
JNODE= NODE_TABLE (JROT, JBEAR, JBEAR)
, NODE_CON (INODE, 2)= JNODE
— NODE_CON (INODE,3)= ICON
WRITE (NUNIT (NCOUNT) ,*) INODE, JNODE, ICON
* SYMMETRY OF THE CONNECTIONS
NODE_CON (JNODE, 1) = 1
- NODE_CON (JNODE, 2)= INODE
NODE_CON (JNODE, 3)= ICON
WRITE (NUNIT (NCOUNT),*) JNODE, INODE, ICON
o DO 624 I=1,6
DO 624 J=1,6
STIF_BEAR(ICON,I,J)= STIF2(IROT,IBEAR,I,J)
DAMP_BEAR (ICON,I,J)= DAMP2 (IROT, IBEAR,I,J)
- STIF_AV(ICON,I,J)= STIFA(IROT,IBEAR,I,J)
624 CONTINUE
f ICON= ICON + 1
i ENDIF
“C* DEVELOP CLEAR CONNECTION TABLE, HERE 2= GROUND
IF( NCON BEAR(IROT, IBEAR,JROT,JBEAR) .EQ. 2 ) THEN
INODE= NODE TABLE(IROT BEAR, IBEAR)
NODE_CON (INODE, 1) =
T* GROUND CONNECTION
JNODE= NNODE+1
NODE_TABLE (NROT+1, BEAR, 1)= JNODE
- CLASS_NODE (JNODE)= NROT+1
CLASS_NAME (NROT+1)= GROUND

NODE_CON (INODE,2)= JNODE
- NODE_CON (INODE,3)= ICON

WRITE (NUNIT (NCOUNT),*) INODE, JNODE, ICON

DO 625 I=1,6

DO 625 J=1,6
- STIF_BEAR(ICON,I,J)= STIF2(IROT,IBEAR,I,J)

DAMP_BEAR(ICON,I,J)= DAMP2 (IROT,IBEAR,I,J)
- STIF_AV(ICON,I,J)= STIFA(IROT,IBEAR,I,J)
625 CONTINUE

ICON= ICON + 1

ENDIF

=629 CONTINUE
621 CONTINUE
— NCON= ICON-1

'C************************************************************C

C* CHECK

WRITE (NUNIT (NCOUNT),*) ’ BEARINGS NCON = ’, NCON

WRITE (NUNIT (NCOUNT) , *)

WRITE (NUNIT (NCOUNT) , *) / STIF_BEAR(IROT,I,J) '

DO 71 ICON=1,NCON

WRITE (NUNIT (NCOUNT) ,72) ( (STIF_BEAR(ICON,I,J), I=1,6),J=1,6)
71  CONTINUE

WRITE (NUNIT (NCOUNT) , *)

(D

!

WRITE (NUNIT (NCOUNT) , *)

WRITE (NUNIT (NCOUNT) ,*)’ STIF_AV(IROT,I,J) ’

DO 73 ICON=1,NCON

WRITE (NUNIT (NCOUNT) ,72) ( (STIF_AV(ICON,I,J), I=1,6),J=1,6)
73  CONTINUE

WRITE (NUNIT (NCOUNT) , *)

1

WRITE (NUNIT (NCOUNT) , *)



WRITE (NUNIT (NCOUNT) , *) / DAMP_BEAR(IROT,I,J) ’

DO 74 ICON=1,NCON

WRITE (NUNIT (NCOUNT) , 72) ((DAMP_BEAR(ICON,I,J), I=1,6),J=1,6)
74  CONTINUE

WRITE (NUNIT (NCOUNT) , *)

—

72 FORMAT (1X, 6(E10.4,1X) )
Ok

Thkhkkkhkhkhkhhkhkhkhkhhhkhkhhkhkhkhkhkhhhhkhkhhhhkhkhhhkhkhkhkhkhkhkkik(C

* CHECK
— WRITE (NUNIT (NCOUNT) ,*) / MODE SHAPES FOR ALL NODES
WRITE (NUNIT (NCOUNT),*) ’ NNODE = ’, NNODE
DO 627 INODE=1,NNODE
DO 627 IMODE=1,NMODE (1)
WRITE (NUNIT (NCOUNT) , 622) (SHAPE_NODE (INODE, IMODE, I) , I=1,6)
622 FORMAT(1X, 6(F11.5) )
© 627 CONTINUE
- WRITE (NUNIT (NCOUNT) , *)

o

_Nkkkhkkhkkhkhkhkhkhhhkhhhhkhhhkhkhhkhhkhkhhhhhkhkhhhkhhhhkhhhkhhkhkhkhkhkhkhkrihhi(
idkkkkkkhkkkhkhkhhkhhkhhhkhkhhkhkhhhhhhkhhkhkhkhkhkhkkhkkkhhd(

“C* NODE CONNECTIONS FOR GEARS IN THE SYSTEM *C

ICON= NCON + 1
: DO 750 IROT= 1,NROT
- DO 750 IGEAR= 1,NGEAR(IROT)
DO 755 JROT= 1,NROT
IF( JROT .EQ. IROT ) GOTO 755
DO 755 JGEAR= 1,NGEAR(JROT)

IF( NCON_GEAR(IROT, IGEAR,JROT,JGEAR) .NE. 0 ) THEN
INODE= NODE_TABLE (IROT, GEAR, IGEAR)
~o* FIX IT LATER= MAKE MULTIPLE CONNECTIONS EASY
NODE_CON (INODE, 1) =1
— JNODE= NODE_TABLE (JROT, GEAR, JGEAR)
ITYPE= NCON_GEAR(IROT,IGEAR,JROT,JGEAR)
- NODE_CON (INODE, 2)= JNODE
NODE_CON (INODE, 3)= ICON
= NODE_CON (INODE, 4)= ITYPE
o NODE_CON (INODE, 5)= ITYPE
“¢* SYMMETRY OF THE CONNECTIONS
NODE_CON (JNODE, 1)=1 '
NODE_CON (JNODE, 2 ) =INODE
NODE_CON (JNODE, 3) =ICON
NODE_CON (JNODE, 4)= ITYPE
-3 NODE_CON (JNODE, 5)= ITYPE
= WRITE (NUNIT (NCOUNT),*) ’ GEARS CONNECTION ’
WRITE (NUNIT(NCOUNT),*) INODE, JNODE, ICON, ITYPE

=
==
A 4

ICON= ICON + 1
ENDIF

"755 CONTINUE

...750 CONTINUE

- NCON2= ICON-1-NCON

WRITE (NUNIT (NCOUNT) , *)
WRITE (NUNIT (NCOUNT) ,*) ‘THERE ARE ’,NCON2,’ GEAR CONNECTIONS’
WRITE (NUNIT (NCOUNT) , *)

C***************************************C

=% MODAL EXTERNAL TORQUE CALCULATION *C
ElkkkkkkkkkhkkkkhkkhhhkkkhhkdhkkkhhhkhkkkkC

DO 760 IROT=1,NROT
INODE= NODE TABLE(IROT EXTERN, 1)



Wi

DO 760 IMODE=1,NMODE (IROT)
FEXT (IROT, IMODE, 6)= TORQUE (IROT) *SHAPE_NODE (INODE, IMODE, 6)
760 CONTINUE

Chkhkkkhkhkhkhkhkhhkhhhhkkhkhkhkhkkhkkkkkkkkkkk*(C

. 7% FILE OUTPUT NUMBERING *C

: K=1

- DO 24 IROT=1,NROT
NNONE= CLASS_TABLE (IROT, NONE)
DO 24 INONE= 1,NNONE
NUNIT_OUT (IROT, INONE)= K

- K= K ¥ 1 ‘

24  CONTINUE !

Thkkkkhkhkkkhkhkkkhkkkkkkkkkkkkkk®C

DO 205 IROT=1,NROT

i TCYCLE (IROT)=60.0/ANGULA (IROT, 1)

F* 205 CONTINUE

mokkkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhhkhkkkhkkkC
TIME=0.0
NCALC= NCYCLE*NPOINTS

- IF( NCALC .EQ. O ) STOP

— NCYCLE_OUT=NCYCLE-NCYCLE_TRAN
NCALC_OUT= (NCYCLE-NCYCLE TRAN) *NPOINTS
NTOTAT= NCYCLE*NPOINTS*NFACT

2% GOOD CONVERGENCE IS ABOUT DELTAT=10E-6 *C

-~ FSAMPLE= ANGULA(1,1)*NPOINTS/60.0

4000 CONTINUE
DELTAT= TCYCLE(1)/(NPOINTS*NFACT)

C IF( DELTAT .GT. 1lE-6 ) THEN
C NFACT= NFACT*2
> GOTO 4000

-C ENDIF

WRITE(NUNIT(NCOUNT),*i 'DELTAT= ’,DELTAT,’ NFACT= ’/,NFACT

- OPEN (40, FILE='head.out’,STATUS=’NEW’)
WRITE (40, *) NCYCLE_OUT,NCALC_OUT,

& TANGULA(1,I) ,FSAMPLE
OPEN (41, FILE='head2.out’, STATUS=’NEW')
WRITE (41,*) NCYCLE_OUT,NCALC OUT,

& ANGULAT(1,1), NPOINTS

wokkkkkk MAIN LOOP *kkkkkkkkkkkkkkkC
DO 100 ICALC= 1,NCALC

DO 105 IFACT = 1,NFACT

DO 110 IROT=1,NROT

LITE

cc IF( ICALC .GT. 2 ) STOP
C PRINT *,’/BEFORE BEARF’

CALL BEARF( IROT, NODE_TABLE, CLASS_TABLE, NODE_CON,
& CLASS _NODE, NMODE, .

& SHAPE NODE, STIF BEAR, STIF_AV, DAMP BEAR,

& XN, VN, FBEAR )

P
i
L H .

[
L

o il
ol

ACUR(IROT)= 360.0*TIME/TCYCLE (IROT)

CALL GEARF( IROT, NODE_TABLE, CLASS _TABLE, NODE_CON,
& CLASS_NODE, NMODE

& SHAPE NODE, XN, VN FGEAR,

& AGEAR, ACUR STIF GEAR NPOINT AGSTIF, TMR,

PRINT *,’BEFORE UNBF’
- CALL UNBF( IROT, NODE_TABLE, CLASS_TABLE, NMODE,
— & SHAPE_NODE, ANGUTA, AMPL,_ PHASE TIME, FUNB )
cc PRINT *,’ BEFORE GEARF '’



& GEAR_STIF,ITYPE_DAM )

- C PRINT *,’BEFORE EQU’
- CALL EQU( IROT, NMODE, FREQ, FUNB, FBEAR, FGEAR,
& XN, AN )

DO 210 IMODE= 1, NMODE(IROT)
— DO 210 ICOORD=1, 6
VNP (IROT, IMODE, ICOORD)= VN (IROT, IMODE, ICOORD)
XNP(IROT, IMODE, ICOORD)— XN (IROT, IMODE, ICOORD)
210 CONTINUE

CALL EULER( IROT, NMODE, DELTAT, XNP, VNP, AN )

Cc PRINT *,’BEFORE BEARF2’
CALL BEARF( IROT, NODE_TABLE, CLASS_TABLE, NODE_CON,
& CLASS_NODE, NMODE
.. & SHAPE_NODE, STIF BEAR STIF_AV, DAMP_BEAR,
-~ & XNP, VNP, FBEAR Y

-~C PRINT *,’BEFORE UNBF2’
o CALL UNBF( IROT, NODE_TABLE, CLASS_TABLE, NMODE,
ht & SHAPE_NODE, ANGULA AMPL _ PHASE TIME+DELTAT FUNB )

e PRINT *,’ BEFORE GEARF2 ’
> ACUR(IROT)= 360.0% (TIME+DELTAT) /TCYCLE (IROT)
CALL GEARF( IROT, NODE_TABLE, CLASS_TABLE, NODE_CON,

& CLASS NODE, NMODE

B & SHAPE_NODE, XNP, VNP FGEAR,

s & AGEAR, ACUR STIF GEAR NPOINT AGSTIF, TMR,
& GEAR_ STIF ITYPE_DAM )

_ CALL EQU( IROT, NMODE, FREQ, FUNB, FBEAR, FGEAR,
- FEXT, XNP, ANP )

CALL NEWMARK( IROT, NMODE, DELTAT, XN, VN, AN, ANP )

¢

DO 200 IMODE=1,NMODE (IROT)

DO 200 ICOORD=1,6

AN (IROT, IMODE, ICOORD)=0.0

ANP (IROT, IMODE, ICOORD)=0.0
200 CONTINUE

liiein

110 CONTINUE
TIME=TIME + DELTAT
105 CONTINUE

(

IF ( ICALC .LE. NCYCLE_TRAN*NPOINTS ) GOTO 100

al

CALL OUTP(NUNIT,NCOUNT,NUNIT_OUT,
& NROT,NMODE, CLASS TABLE
& NODE_TABLE, SHAPE_NODE, XN,VN )

{1

)

WRITE(66,*) GEAR_STIF

=100 CONTINUE
Chhkkkkhkhhhkhkhkhhhhkhkhhhkhhhhhkhhhhhhkkhhhhhhhkhhkhhkkhdhhhkhkhhhkkhhkkkhkkkhkkk*C
== RETURN

END

{1

C**************************************************************'*********C

SUBROUTINE BEARF( IROT, NODE_TABLE, CLASS_TABLE, NODE_CON,
& CLASS_NODE, NMODE,
& SHAPE_NODE, STIF_ BEAR STIF_AV, DAMP_ BEAR, XN, VN, FBEAR )

{1

PARAMETER NONE= 1

CE



PARAMETER UNBAL= 2
PARAMETER BEAR= 3
PARAMETER GEAR= 4

PARAMETER N20=20
PARAMETER N50=50

“* GLOBAL VARIABLES *C
INTEGER NODE_TABLE (N20,5,N50)
INTEGER CLASS_TABLE (N20,N20)
INTEGER NODE_CON (NS0, N50)

- INTEGER CLASS_NODE (N50)
INTEGER NMODE{N50)

REAL SHAPE_NODE (N50,N20,6)

REAL STIF_BEAR(N20,6,6), STIF AV(N20,6,6)
REAL DAMP_BEAR(N20,6,6)

- REAL XN(N20,N20,6), VN(N20,N20,6)

- REAL FBEAR(N20,N20,6), FB(6)

-7* LOCAL VARTABLES *C
INTEGER IBEAR, NBEAR, IMODE, ICOORD

REAL X1(6), V1(6), X2(6), V2(6)
—:* INITIALIZE VARIABLES *C
DO 17 IMODE=1,NMODE (IROT)
DO 17 ICOORD=1,6
- FBEAR (IROT, IMODE, ICOORD)= 0.0
17  CONTINUE

gj* START CALCULATIONS *C

O[x

WRITE(50,*) ’ IN BEAR '

%é NBEAR= CLASS_TABLE (IROT, BEAR)
DO 100 IBEAR= 1, NBEAR

= DO 10 ICOORD=1,6 |

X1 (ICOORD)= 0.0
V1(ICOORD)= 0.0
10  CONTINUE

INODE= NODE_TABLE (IROT, BEAR, IBEAR)

uu‘

- WRITE(50,*) ’ INODE ’, INODE

DO 110 IMODE=1,NMODE (IROT)

DO 110 ICOORD= 1,6

X1 (ICOORD)= X1 (ICOORD) +

& XN (IROT, IMODE, ICOORD) *SHAPE_NODE (INODE, IMODE, ICOORD)

V1 (ICOORD)= V1 (ICOORD) +

& VN(IROT, IMODE,ICOORD)*SHAPE_NODE ( INODE, IMODE, ICOORD)
110 CONTINUE

{1

$1]

- NCON= NODE_CON (INODE, 1)
T WRITE(50,*) ' NCON /, NCON
. % LOOP FOR ALL CONNECTIONS *C

DO 120 ICON= 2, 2*NCON+1, 2
JNODE= NODE_CON (INODE, ICON)

{l



JCON= NODE_CON (INODE, ICON+1)
JROT= CLASS_NODE (JNODE)

- WRITE(50,*) / IROT INODE JNODE JCON JROT ’
c WRITE(50,*) IROT, INODE, JNODE, JCON, JROT

'*? FIND CLASS OF THE NODE *C

— DO 20 ICOORD=1,6 ,
X2 (ICOORD)= 0.0
V2 (ICOORD)= 0.0
FB(ICOORD)=0.0

20 CONTINUE

, DO 130 IMODE= 1,NMODE (JROT)
“ DO 130 ICOORD= 1,6
X2 (ICOORD) = X2 (ICOORD) +
& XN (JROT,IMODE, ICOORD) *SHAPE_ NODE (JNODE, IMODE, ICOORD)
- V2 (ICOORD)= V2 (ICOORD) +
— & VN(JROT, IMODE, ICOORD) *SHAPE_NODE (JNODE, IMODE , ICOORD)
130 CONTINUE

: DO 150 ICOORD= 1,6
— SUMX=0.0
SUMV=0.0

= SUMA=0.0 ,
- DO 160 JCOORD= 1,6

SUMX= SUMX +
& STIF_BEAR(JCON, ICOORD,JCOORD) *( X1(JCOORD) - X2 (JCOORD) )
SUMV=_SUMV +
& DAMP_BEAR (JCON, ICOORD,JCOORD) *( V1 (JCOORD) - V2 (JCOORD) )
SUMA=_ SUMA +-
: & STIF_AV(JCON, ICOORD,JCOORD) *X1 (JCOORD)
160 CONTINUE
= FB(ICOORD)= SUMV + SUMX - SUMA

150 CONTINUE *

(

WRITE(50,*%) * FB 1 2 3 4 '
WRITE(50,*) FB(1), FB(2), FB(3), FB(4)

ol

DO 170 IMODE=1, NMODE (IROT)

A

FBEAR (IROT, IMODE, 1) = FBEAR(IROT,IMODE,1) +
& SHAPE_NODE (INODE, IMODE, 1) *FB(1) +
& SHAPE_NODE (INODE, IMODE, 2) *FB(2)

FBEAR (IROT, IMODE, 2) = FBEAR(IROT,IMODE,1)

Ll

("

s FBEAR (IROT, IMODE, 3)= FBEAR(IROT,IMODE,3) +
= & SHAPE_NODE (INODE, IMODE, 3) *FB(3) +
& SHAPE_NODE (INODE, IMODE, 4) *FB (4)

FBEAR (IROT, IMODE, 4)= FBEAR(IROT,IMODE, 3)

FBEAR (IROT, IMODE, 5)= FBEAR(IROT, IMODE,5) +
& SHAPE_NODE (INODE, IMODE, 5) *FB(5)

(|

FBEAR (IROT, IMODE, 6) = FBEAR(IROT,IMODE,6) +
& SHAPE_NODE (INODE, IMODE, 6) *FB(6)

U

170 CONTINUE
120 CONTINUE
£900 CONTINUE

=
ChhkhkhkhkkhkhhkkhhhkhhhkhkhkkhkkhkhhhhhhhhhhhhkhkhkhhkhkhhkhkkkkhhhhkkhkkkkkkhhhkkkrkC
RETURN

END

ome



——

c***********************************************************************C
CDkkkkkkkhkhkhkhhkkhhkhkhkhhhkhhhhkhkhkhhkhkkhkhhkhhhhhhkhkkhhkhhhhkhhhkhhkhhkhkhkhhkhkhkhhhkhkkkhhhkhC

» SUBROUTINE UNBF( IROT, NODE_TABLE, CLASS_TABLE,
- & NMODE,
& SHAPE_NODE, ANGULA, AMPIL_PHASE, TIME, FUNB )

N PARAMETER NONE= 1
= PARAMETER UNBAL= 2
PARAMETER BEAR= 3
PARAMETER GEAR= 4

PARAMETER N20=20
PARAMETER N50=50

- PARAMETER ID_X=1
PARAMETER ID_Y=3
PARAMETER PI=3.1415926

“C* GLOBAL VARIABLES *C

INTEGER NODE_TABLE (N20,5,N50)
> INTEGER CLASS TABLE(N2O N20)
INTEGER NMODE(N50)

REAL SHAPE_NODE (N50,N20,6)
REAL FUNB(N20,N20,6)
- REAL TIME

REAL AMPIL_PHASE (N50,3)
REAL ANGUTA (N20,2)

C* LOCAL VARIABLES *C
INTEGER IUNB, NUNB, IMODE, ICOORD

[

REAL AMPL, PHASE, PHIADD
REAL ARG

REAL SPEED, ANGACL

- REAL OMEGA

Nhkkkkkkkhkkhkhkkhkhkhkkkkkhkkhkkk®(

SPEED= ANGULA (IROT,1) -
ANGACL= ANGULA (IROT,2)

— OMEGA=PI*SPEED/30. 0

DO 10 IMODE=1,NMODE (IROT)

DO 10 ICOORD=1,6

FUNB(IROT, IMODE, ICOORD)=0.0

FUNB(IROT, IMODE, ICOORD)=0.0
0 CONTINUE

EM

Cr

NUNB= CLASS_TABLE (IROT,UNBAL)
. C PRINT *, NUNB
DO 20 IUNB=1,NUNB
o INODE= NODE_TABLE (IROT,UNBAL, IUNB)
~C PRINT *, INODE
— AMPL= AMPL PHASE(INODE 1)
PHASE= AMPL_PHASE (INODE, 2)

= PHIADD= AMPL_PHASE (INODE, 3)
ARG= OMEGA*TIME + PHASE + PHIADD



CcC PRINT *, AMPL, PHASE, ARG, OMEGA, TIME
DO 30 IMODE=1,NMODE (IROT)

FUNB (IROT, IMODE, ID_X)=
AMPL*SHAPE_NODE (INODE, IMODE, ID_X) *
( ANGACL*SIN(ARG) + OMEGA*OMEGA*COS (ARG) )
FUNB (IROT, IMODE, ID_Y)=
AMPT*SHAPE_NODE (INODE, IMODE, ID_Y) *
( ANGACL*COST{ARG) + OMEGA*OMEGA*SIN (ARG)
e PRINT *, SHAPE_NODE (INODE, IMODE,ID_X), FUNB(IROT,IMODE,ID X)
30 CONTINUE

R &

_ 20 CONTINUE

C************************************************************************C

RETURN

- END
C**************************************************************************C

%}*********************************************************************c
Lokkkkkhkhkkhkhkhkhkkkkkhkhkk* SUBROUTINE EQUATION hkkkkkkkkhhhhhhhkhkhkdkhhhhhrC
Chhhkhhkhdhhhhhhhhhhhhhhkhhhhhhkhhhhkhhkhhhrhhrhhhkhhkkkhkkhhrhhkhhkhhkhkhkkr %O
SUBROUTINE EQU( IROT, NMODE, FREQ, FUNB, FBEAR, FGEAR,

& FEXT, XN, AN )

PARAMETER N10= 10
. PARAMETER N20= 20
Lé PARAMETER N50=50

.M* GLOBAL VARIABLES *C

- INTEGER IROT
INTEGER NMODE (N50)

: REAL FREQ(N10,N10,N10)
- REAL FUNB(N20,N20,6)
REAL FBEAR(N20,N20,6)
= REAL FGEAR(N20,N20,6)
= REAL FEXT(N20,N20,6)
REAL XN (N20,N20,6)
REAL AN (N20,N20,6)

b
U* LOCAL VARIABLES *C
INTEGER ICOORD, IMODE

Rk ko dk kA k kK THE EQUATIONS OF MOTION xkkkkkkkkkhkkhkkhhkkkkkkkrkk(C
o

c WRITE(50,*) ’ IN EQU '
N DO 100 IMODE=1,NMODE (IROT)

AN (IROT, IMODE, 1) = FUNB(IROT, IMODE,1) -
& FBEAR (IROT, IMODE, 1) -

&  FREQ(IROT,IMODE, 1) **2*XN(IROT, IMODE,1) +
& FGEAR (IROT, IMODE, 1)

AN (IROT, IMODE, 2)= AN(IROT, IMODE,1)
AN (IROT,IMODE, 3)= FUNB(IROT,IMODE,3) -

& FBEAR (IROT, IMODE,3) -
_ & FREQ(IROT,IMODE,3)**2*XN(IROT,IMODE,3) +
& FGEAR (IROT, IMODE, 3)

AN (IROT, IMODE, 4)= AN(IROT,IMODE,3)



AN (IROT, IMODE,S5)= -FBEAR(IROT,IMODE,5) -
& FREQ (IROT, IMODE, 5) **2*XN(IROT,IMODE,5) +
& FGEAR (IROT, IMODE, 5)

AN (IROT, IMODE, 6)= -FBEAR(IROT,IMODE,6) -
& FREQ(IROT,IMODE,6)*#*2%XN(IROT,IMODE,6) +

— & FGEAR (IROT, IMODE, 6) +
& FEXT (IROT, IMODE, 6)

WRITE(50,*) ’/ IROT IMODE ICOORD FUNB FBEAR '
T WRITE(50,*) IROT,IMODE
C WRITE(50,*) FUNB(IROT,IMODE,1), -FBEAR(IROT,IMODE, 1)

_ 100 CONTINUE

Chkhkkhkkhkhkhkkkhkhkhkhkhkkkhkhkkkhkhhkhkhkhkhkkkkhkhkkhkkhkhkhkhkhihkkhkkkkkkkkkkhkkkhkik(C

RETURN
-— END
ChikhkkhhkhhhhkhhkkhhhhhhhkhhhhhhhkhhhhkhkhkhhhkhhkkkhkkhkhhkhhhhkkhhkkhkhkhkkhkhkC

SUBROUTINE EULER( IROT, NMODE, DELTAT, XN, VN, AN )

- PARAMETER N20=20
PARAMETER N50=50

INTEGER NMODE (N50)
REAL H,DELTAT

REAL XN(N20,N20,6), VN(N20,N20,6), AN(N20,N20,6)
REAL XNP(N20,N20,6), VNP(N20,N20,6)

INTEGER IMODE, ICOORD

Chhkkhkkkkkkhkkhkkkk THE EULER METHOD A 2 2T ITITITTYTTY o

H=DELTAT

DO 10 IMODE= 1,NMODE (IROT)
DO 20 ICOORD=1,6

VNP (IROT, IMODE, ICOORD)= VN(IROT,IMODE,ICOORD) +

& ' H*AN (IROT, IMODE, ICOORD)

XNP (IROT, IMODE, ICOORD) = XN (IROT,IMODE, ICOORD) +

& O0.5%H*( VNP(IROT,IMODE,ICOORD) + VN(IROT,IMODE,ICOORD) )
20  CONTINUE

10  CONTINUE

fw‘ L

r\ Iy

DO 30 IMODE= 1,NMODE (IROT)

bO 30 ICOORD=1, 6

VN (IROT, IMODE, ICOORD)= VNP (IROT,IMODE,ICOORD)
L XN (IROT, IMODE, ICOORD)= XNP(IROT, IMODE, ICOORD)
30 CONTINUE

(u memn e

RETURN

T END
kkkkkkhkkkkhkkkkhkkkkhkkkhkhkkhkhkkhkkhkkhkkkhkkkhhkhhkhhhhhkhkhhhkhhkhkdkkkkhkhkkhhkk(C

ChhkkhkhkhkhhhhkhhkhhhdhhhhhdkdkhhhhkhdhhkkhhhhkhhkhkhkhkhkhkkhhkrkkkkkkrkkkxC
SUBROUTINE NEWMARK( IROT, NMODE, DELTAT, XN, VN, AN, ANP )

= PARAMETER N20=20
PARAMETER N50=50

INTEGER NMODE (N50)

REAL H,DELTAT

r



REAL XN(N20,N20,6), VN(N20,N20,6), AN(N20,N20,86)
REAL ANP(N20,N20, 6)

— INTEGER IMODE, ICOORD
REAL BETA

BETA=0.167

Chkkkk**x NEWMARK-BETA METHOD ***kkkkkhdhhhhdhhhdhhhhkhhhhhdkhhdhhtdhkoC
H=DELTAT

— DO 20 IMODE= 1,NMODE (IROT)
DO 20 ICOORD=1, 6

XN (IROT, IMODE, ICOORD) =XN (IROT, IMODE, ICOORD) +

& VN (IROT, IMODE, ICOORD)*H +
& (0.5 - BETA ) *AN(IROT, IMODE, ICOORD)*H*H +
& BETA*ANP (IROT, IMODE, ICOORD)*H*H

- VN (IROT, IMODE , ICOORD) =VN (IROT, IMODE, ICOORD) +
& 0.5%H*( AN(IROT, IMODE, ICOORD)+ANP (IROT, IMODE, ICOORD) )

20 CONTINUE
RETURN
- END
Tk kR kA A A kAR AR kAR AR IR AR R AR R AR AR AR AR R IR RRRRRRR KRR
C*******************************************************C
Chhkkkkkkkkkkkkkk SUBROUTINE OUTPUT *hkkkkkhhkhkhhkkhhkhkhkkk(

'“*** OUTPUT AND POST-PROCESSING OF THE RESULTS *kdkkkkC
- SUBROUTINE OUTP (NUNIT,NCOUNT,NUNIT_OUT,

& NROT,NMODE, CLASS_TABLE,

& NODE_TABLE, SHAPE_NODE, XN,VN )

hae PARAMETER NONE= 1
PARAMETER UNBAL= 2
PARAMETER BEAR= 3
PARAMETER GEAR= 4

PARAMETER N10=10
- PARAMETER N20=20
- PARAMETER N50=50

PARAMETER SC=10000

INTEGER NUNIT (N50)
- INTEGER NUNIT OUT (N20,N20)
INTEGER NMODE(N50)
INTEGER JSTAT, IUNIT
INTEGER NROT, IROT, INODE, IMODE
INTEGER NODE TABLE(N20,5,N50)
INTEGER CLASS TABLE (N20,N20)

i

€. i

I

REAL SHAPE_NODE (N50,N20,6)
REAL XN (N20,N20,6), VN(N20,N20,6)
REAL XD(6), VD(6)

IROT=0
JUNIT=0

DO 10 IROT=1,NROT

(it

NNONE= CLASS TABLE(IROT NONE)
DO 10 INONE=1, NNONE

PO 30 ICOORD=1, 6
XD (ICOORD)=0.0
VD (ICOORD)=0.0



30

20

100
10

CONTINUE
INODE= NODE_TABLE (IROT, NONE, INONE)

DO 20 IMODE=1,NMODE (IROT)

DO 20 ICOORD=1, 6

XD (ICOORD)= XD(ICOORD) +

& XN (IROT, IMODE, ICOORD) *SHAPE_NODE ( INODE , IMODE , ICOORD)
VD (ICOORD)= VD(ICOORD) +

& VN (IROT, IMODE, ICOORD) *SHAPE_NODE ( INODE,, IMODE , ICOORD)
CONTINUE

IUNIT= NUNIT_OUT (IROT, INONE)
WRITE (NUNIT (NCOUNT+IUNIT) , *) XD(3)

FORMAT( 1X, 2(G15.9,1X) )
CONTINUE

RETURN
END

:***********************************************************************C
'C***********************************************************************C

C* CODE FOR GEAR FORCE SUBROUTINE
!***********************************************************************C

SUBROUTINE GEARF(IROT, NODE_TABLE, CLASS_TABLE, NODE_CON,
& CLASS_NODE, NMODE,

& SHAPE_NODE, XN, VN, FGEAR,

& AGEAR, ACUR, STIF_GEAR, NPOINT, AGSTIF, TMR, GEAR STIF,
& ITYPE DAM )

PARAMETER NONE= 1
PARAMETER UNBAL= 2
PARAMETER BEAR= 3
PARAMETER GEAR= 4

PARAMETER N10=10
PARAMETER N20=20
PARAMETER N50=50
PARAMETER N120=120

PARAMETER PI=3.1415926

‘* GLOBAL VARIABLES *C

{

til:ddi

I

——

INTEGER NODE_TABLE(N20,5,N50)
INTEGER CLASS_TABLE (N20,N20)
INTEGER NODE_CON (N50,N50)
INTEGER CLASS_NODE (N50)
INTEGER NMODE(NSO0) !
INTEGER NPOINT(N20) -
INTEGER ITYPE_DAM(N50,N50)

REAL SHAPE_NODE (N50,N20, 6)
REAL XN (N20,N20,6), VN(N20,N20,6)

REAL FGEAR(N20,N20,6)

REAL AGEAR(N20,N20,N10), AGSTIF(N20,N120)
REAL STIF GEAR(n20,n120)

REAL TMR(N20,3,3)

REAL ACUR(N20)

C*****************************************************************C

——

INTEGER NGEAR
INTEGER INODE, JNODE, ICON, JCON, IROT
INTEGER AXE, RAD

REAL PHIN, PSI, GAMA, ALPHA



REAL SX, SV, FG(6), FX,FY,FZ,FN, DLENGTH
REAL F_RADIAL, F_TANG, F_AXTAL

REAL RI, R2

_ REAL GEAR_STIF

REAL DX, DY, DROT

REAL X1(6), V1(6), X2(6), V2(6)
— REAL X21(6), V21(6)

Thkkkkhhhhhdkhhhhhhhhkhkhhkhkhhhhkkhhkhhhhhhhhhhhhhhhhhhhhhhhhkkhkhhkhkkk(
>* INITIALIZE VARIABLES *C
L*****************************************************************c
DO 17 IMODE=1,NMODE (IROT)
DO 17 ICOORD=1 6
FGEAR(IROT,IMODE,ICOORD)= 0.0
17 CONTINUE

-~

;E*****************************************************************C

—* START CALCULATIONS *C
ChhkkkhhkkhkhhhkhhhhhkhkhhkhhhhhhhhhhkhhkhkhkkhkkrkkkkkkkxC

NGEAR= CLASS_TABLE (IROT, GEAR)
DO 100 IGEAR= 1, NGEAR

. DO 10 ICOORD=1,6

- X1 (ICOORD)= 0.0

, V1 (ICOORD)= 0.0

*°10  CONTINUE

£l
Chkhkkkkhkkhhhhhhhhhkhhhhhkhkhhhkhkkhhkkhkhhhkhkhkkkkkhkkhhi(

Rl= AGEAR(IROT,IGEAR,1)

(e

C* ALL ANGLES IN THE INPUT WERE IN THE DEGREES
£>* TRANSFORM ALL ANGLES INTO RADIANS

ar-ar

DO 11 I=2,5
AGEAR (IROT, IGEAR,I)= PI*AGEAR(IROT,IGEAR,I)/180.0
CONTINUE

b
=

PHIN= AGEAR(IROT,IGEAR,2)
PSI= AGEAR(IROT, IGEAR, 3)
GAMA= AGEAR(IROT,IGEAR,4)
ALPHA=AGEAR (IROT, IGEAR, 5)
Chhkkkkhkhhkhhhkhhkkhkhkhkhkkhkkhkkkkkkk®(C

(e

e

INODE= NODE_TABLE (IROT,GEAR, IGEAR)

DO 20 IMODE=1,NMODE (IROT)
DO 20 ICOORD= 1,6
X1 (ICOORD)= X1 (ICOORD) +
& XN(IROT, IMODE, ICOORD) *SHAPE_NODE (INODE, IMODE, ICOORD)
V1 (ICOORD)= V1 (ICOORD) +
& VN(IROT, IMODE,ICOORD) *SHAPE_ NODE (INODE, IMODE, ICOORD)
20  CONTINUE

S

NCON= NODE_CON (INODE, 1)

dr

“x LOOP FOR ALL CONNECTIONS *C
DO 110 ICON= 2, 2*NCON+2, 3

L

C* FIND CONNECTION
JNODE= NODE_CON (INODE, ICON)

{me I



- JCON= NODE_CON (INODE, ICON+1)
) JTYPE= NODE_CON (JNODE, ICON+2)
:C ITYPE_ORG = NODE_CON(JNODE ICON+3)
ITYPE= JTYPE
JROT= CLASS_NODE (JNODE)

C WRITE(66,*) INODE, JNODE, JCON, ITYPE

C* WORK HERE : CHECK IT AGAIN YOU CAN PUT IT BEFORE BIG LOOP
, NGEAR2= CLASS_TABLE (JROT, GEAR)
DO 25 JGEAR=1,NGEAR2
— IF( JNODE .EQ. NODE_TABLE (JROT,GEAR,JGEAR) )
& R2= AGEAR(JROT,JGEAR, 1)
25  CONTINUE

C* AS A REFERNCE GEAR IS TAKEN THE ONE WITH SMALLER RADIUS

ANGLE= ACUR(IROT)
- IF( R1 .GT. R2 ) ANGLE= ACUR(JROT)

kkkkkkkkkkhkhkhkhkhkhhkkhhhkhkhhkhkhhhhkhhkhhhhhkkhkhhkkkkhhhhkkhhhhkhkhhkhhkkkxC

! FIND STIFFNESS FOR THIS CONNECTION

~* WORK HERE! -
ChhkhkhkkkhkhhkhhhkhhhhhhhkhkhhhkhhhhhhhhhhhhkhhhhkhkhhdhhhhhhrhkhhkhkkkhhkhkkkxC

, GEAR_STIF=0.0
- NP= NPOINT (ITYPE)

e WRITE (66,*) ’ITYPE=,’,ITYPE,’ ANGLE= ’, ANGLE
_c PRINT * , ’BEFORE GSTIF’
CALL GSTIF(ITYPE,NP,AGSTIF,ANGLE,STIF GEAR,GEAR STIF,
, & ITYPE DAM,JTYPE)
c IF (ITYPE .NE. JTYPE) ITYPE = JTYPE
~C PRINT * , ’AFTER GSTIF’
cc WRITE(66,*) ‘GEAR _STIF= ’, GEAR_STIF
-c IF (ITYPE .NE. JTYPE) NODE_CON (INODE,ICON+2)=ITYPE

*****************************************************************C

T#* INITIALIZE VARIABLES *C
C*****************************************************************C
DO 30 ICOORD—l 6

X2 (ICOORD)= O.

X21 (ICOORD)= o.o

V2 (ICOORD)= 0.0

: V21 (ICOORD)= 0.0

L30 CONTINUE

Tkkkkhkkkhkhkkhkhkhkkhkhkhkhkhhkhkkkhhkhkhkkhkhkkkhkkkkkhkhkhkhkkhkhkhkhkhkhkhkhkhkkkkkhkkkhkhkkikdxkx(C

- * FIND COORDINATES OF CONNECTED GEAR IN ITS COORD. SYSTEM *C
Thkkkhkhhhhhkhkhkhhkhhhhhhhhhhkhhhhhhhhhhkhkhhkhkhkhkhkdkhhdhkhhhhhhhkkkhkkkkk*xC

e DO 40 IMODE= 1,NMODE (JROT)

DO 40 ICOORD= 1,6

X2 (ICOORD)= X2 (ICOORD) +

o & XN(JROT, IMODE, ICOORD) *SHAPE_NODE (JNODE, IMODE , ICOORD)
¢ V2 (ICOORD)= V2 (ICOORD) +

<X & VN(JROT, IMODE, ICOORD) *SHAPE_NODE (JNODE, IMODE, ICOORD)

40 CONTINUE
-*****************************************************************c

s

”"ul

t*****************************************************************C

C* COORDINATE TRANSFORMATION OF J-GEAR’S SHAFT COORDINATES INTO *C

—* I-GEAR’S SHAFT COORDINATES *C
=kkkkkkhhkhkkhkhkhkhhhhhkhhkhhhhhkhkhkhkhkhkhkhkkhhkhhkkhkhhkhkhkhkhkhkhhkkhhkkkhkkd*C

C* TRANSFORMATION OF X, Y, Z COORDINATES. ANGLES ARE INVARIANT TO
£* COORDINATE TRANSFORMATION.



- DO 50 ICOORD= 1,6, 2
SX= 0.0
Sv= 0.0
DO 51 JCOORD= 1,6, 2
SX= SX + TMR(JTYPE, ICOORD,JCOORD) *X2 (JCOORD)
~C SV= SV + TMR(JTYPE,ICOORD,JCOORD)*V2(JCOORD)

51 CONTINUE
— X21(ICOORD)= SX
ccC V21 (ICOORD)= SV

50 CONTINUE

* ANGLES REMAIN UNCHANGED, I.E. X21(angles coord)= X2 (angles coord)
- DO 52 ICOORD= 2,6, 2

X21 (ICOORD)= X2 (ICOORD)
52 CONTINUE

Tc WRITE (66,*) ’DIF /,X2(1)-X21(1), X2(3)-X21(3)

*****************************************************************C

—* CALCULATE THE SPRING CONTRACTION ( EXPANSION ) *C
Chikkhdkkdkdhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhkhhhhhhhhkhhhkhhhhhkhkk ki *Q

DX= X1(1)-X21(1)
— DY= X1(3)-X21(3)
DROT= R1*X1(6)-R2+X21(6)

DLENGTH= ( DX*COS (PHIN) + DY*SIN(PHIN) ) +

- & DROT*COS ( PHIN)
c WRITE(66,*) ’‘IROT ’,IROT,’ DL= ’/,DLENGTH
_C WRITE(66,*) ‘DX ’, DX, / DY /, DY, ’ DROT ’,DROT
'S DVELOSITY= ( V1(1)-V21(1) )*COS(PHIN) +
X & ( V1(3)-V21(3) )*SIN(PHIN) +
<X & ( R1*SPEED(IROT)-R2*SPEED(JROT) )*COS (PHIN)

‘*****************************************************************C

* CALCULATE THE GEAR FORCE AT CONTACT POINT *C
ThkkkhhkdkhhhhhkhhhhhhhhhhhhhhhdhkhhkrhhhhkhhhkhkhhkhhhkhkhkhhhkhkkkrrthkxC

C GEAR_STIF (JCON)
FN= -GEAR_STIF*DLENGTH

=

cC WRITE(66,*) ’ IROT= ’,IROT,’ FN= ’,FN,

cC WRITE(66,*) GEAR_ST ’,GEAR_STIF
C*****************************************************************C
- - FX=0.0 :
T FY=0.0
- F2=0.0

DO 12 I=1,6
12  FG(I)=0.0

E}****************************************************************C

C* PHIN - PRESSURE ANGLE

i*# PSI - HELIX ANGLE

«* GAMA - PITCH ANGLE

C* ALPHA - CONTACT POINT ANGLE

¥ F_TANG= FX
T* F_RADIAL = FY
Cx F_AXIAL= FZ

_* CONTACT POINT COORDINATE SYSTEM TRANSFORMATION *C
F_RADIAL= FN*SIN(PHIN)
F_TANG=  FN*COS (PHIN) *COS (PSTI)
F_AXIAL= FN*SIN(PHIN)*SIN(PSI)




FX= F_RADIAL
5 FY= F_TANG
- FZ= F_AXIAL

~* IN PLANE YZ COORDINATE TRANSFORMATION *C
AXE= 1
— RAD= 1
CALL PLANE( FX, FY, FZ, GAMA, AXE, RAD )
- 2% IN PLANE XY COORDINATE TRANSFORMATION *C

AXE= 3
- RAD= 1

CALL PLANE( FX, FY, FZ, ALPHA, AXE, RAD )
_ FG(1)= FX

FG(2)= FG(1)

FG(3)= FY

FG(4)= FG(3)
» FG(5)= FZ

1*****************************************************************C

- DO 70 IMODE=1,NMODE (IROT)
DO 70 ICOORD=1,5,2
FGEAR (IROT, IMODE, ICOORD) = FGEAR(IROT, IMODE, ICOORD) +
& SHAPE_NODE (INODE, IMODE, ICOORD) *FG ( ICOORD)

70  CONTINUE

. DO 75 IMODE=1,NMODE (IROT)
. FGEAR (IROT, IMODE, 6) = FGEAR (IROT,IMODE,6) +
& SHAPFE_NODE (INODE, IMODE, 6) *FY*R1
75  CONTINTE

—110 CONTINUE
100 CONTINUE

_c WRITE(66,*) / FGEAR= ’, FGEAR(IROT,1,1)
RETURN

END
Eﬂ***********************************************************C

C***********************************************************C
F***************************************C
"% CODE FOR GEAR STIFFNESS CALCULATION *C
't***************************************C

SUBROUTINE GSTIF( ITYPE, NPOINT, AGSTIF, ANGLE,

& STIF_GEAR, GEAR_STIF,ITYPE_ DAM,JTYPE )

(TEL

- PARAMETER N10=10
PARAMETER N20=20
PARAMETER N50=50
PARAMETER N120=120

INTEGER ITYPE, NPOINT, JTYPE
INTEGER ITYPE_DAM(NS50,N50)

REAL AGSTIF(N20,N120), ANGLE

REAL STIF GEAR(nZO nl20)

REAL GEAR_STIF
ThhhkhkhkhkkhkhkhkkhkkkThhkhkkkk kO

INTEGER IPOINT
- REAL A, B, ARATIO, SDIF, AMAX
%% Fxk* REWRITE WITH FORTRAN FUNCTIONS : MOD & ETC. *C
o WRITE(66,*) ’'ANGLE= ‘/, ANGLE



10

20

ITEETH = 1

IF( ANGLE .GE. 360.0 ) THEN
ANGLE= ANGLE - 360.0

ITEETH = 1

GOTO 10

ENDIF

IF ( ANGLE .GE. 0.0 ) GOTO 25
ANGLE= ANGLE + 360.0

ITEETH = 1

GOTO 20

CONTINUE

AMAX= AGSTIF(ITYPE,1)

IF ( ANGLE .LE. AMAX ) GOTO 40
ANGLE= ANGLE - AMAX

ITEETH = ITEETH +1

GOTO 30

CONTINUE
IF ( ITEETH .GE. 28) PRINT * , ’ITEETH & ANGLE=
IF ( ITYPE_DAM(JTYPE,ITEETH) .NE. ITYPE) THEN

ITYPE = ITYPE_DAM(JTYPE, ITEETH)
END IF

Thkkkkhkkhkhkhkhkkkhhkk k(O

<
C

B

.

if (iteeth .EQ. 10) then

’

’

ITEETH, ANGLE

write(66,*) ’itype’, itype, ’iteeth’, iteeth, "jtype’, jtype

write (66, *) ‘angle’, angle

write(66,*) ’stif gear’, (stif_gear(itype, i),i=1,100)

end if
GEAR_STIF= STIF_GEAR(ITYPE,1)

© * THERE IS A BUG = FIND & FIX= RUN

———
[N

(.t

LI

q

DO 50 IPOINT= 2,NPOINT

IF( ( ANGLE .GE. AGSTIF(ITYPE, 3+IPOINT) )

& .AND.

& ( ANGLE .LT. AGSTIF(ITYPE, 4+IPOINT) ) ) THEN

A= ANGLE - AGSTIF(ITYPE,3+IPOINT)

B= AGSTIF(ITYPE,4+IPOINT) - AGSTIF(ITYPE, 3+IPOINT)

ARATIO= A/B

SDIF= STIF_GEAR(ITYPE,IPOINT) - STIF GEAR(ITYPE, IPOINT-1)

GEAR_STIF= STIF_GEAR(ITYPE,IPOINT-1) '+ SDIF*ARATIO

ENDIF
CONTINUE

WRITE (66,*) ‘ITEETH= ', ITEETH
ITYPE = JTYPE
RETURN
END

tﬁ****************************************************************C
C*****************************************************************C

- * SUBROUTINE FOR IN-PLANE COORDINATE TRANSFORMATION
b bbbl R e R 2 2 TSI,

SUBROUTINE PLANE( X, Y, Z, ANGLE, AXE, RAD )
PARAMETER PI=3.14

INTEGER AXE, DIR, RAD

REAL X, Y, 2, ANGLE

REAL OLD_A, OLD_B, OLD_C

REAL NEW_A, NEW_B, NEW C

IF( RAD .EQ. O ) ANGLE= PI*ANGLE/180.0
DIR= IABS (AXE)/AXE

*C



IF( AXE .EQ. 1 ) THEN
OLD_A=
OLD_B=
OLD_C=
ENDIF

5 B9 <

IF( AXE .EQ. 2 ) THEN
X

o]
()
o
(@]

[}
<3

IF( AXE .EQ. 3 ) THEN
OLD_A= X

OLD B= Y

OLD_C= Z

ENDIF

NEW_A= OLD_A*COS (ANGLE) - OLD_B*SIN (ANGLE)
NEW_B= OLD_A*SIN(ANGLE) + OLD_B*COS (ANGLE)
NEW_C= DIR*OLD_C

IF( AXE .EQ. 1 ) THEN
Y= NEW_A

Z= NEW_B

X= NEW_C

ENDIF

IF( AXE .EQ. 2 ) THEN
X= NEW_A
Z= NEW_B
Y= NEW C
ENDIF

IF( AXE .EQ. 3 ) THEN
X= NEW_A

= NEW_B

Z= NEW_C

ENDIF

RETURN
END

(B0

Ill fgpe

o

(e

cime



_C***********************************************************************C
Chhkkkkkhhkhkkkhkkkhkkhkkkkkk " THE FINAL INSULT " AhkhkhhhhhkhkhhhhhkhkhhkkhkkxkC
2***********************************************************************C

—

SUBROUTINE LAT(NUNIT,NCOUNT,NROT,NSTAT,NBEAR,LBEAR,STIF2,

& DAMP2,STIFA,FREQ,SHAPE, NMODE,NCON_BEAR,NSWITCH)
PARAMETER NROT_SIZE=10
, PARAMETER NSTAT SIZE=100
—_ PARAMETER N100=100
PARAMETER N50=50
PARAMETER N20=20
PARAMETER N10=10
- PARAMETER N5=5

INTEGER NMODE (N50)

INTEGER NM(N50)

INTEGER NROT

INTEGER NUNIT(N20) ,NSTAT(NROT_SIZE)
. INTEGER NBEAR(NROT_SIZE), LBEAR(NROT_SIZE,10)
- INTEGER NSWITCH(N10)

REAL
REAL
~— REAL
REAL

SHAPE (N50,N50,N50, 4)
FREQ(N10,N10,N10}

LMODE (NROT_SIZE,N10,NSTAT SIZE)
SLOPE (NROT_SIZE,N10,NSTAT SIZE)

7 INTEGER N, NB, NNCT
- INTEGER NBC

REAL
REAL
— REAL
REAL
. REAL
;f REAL

REAL

REAL
REAL
7 REAL
- REAL
— REAL

REAL

REAL
— REAL
~ REAL

REAL
£ REAL
= REAL
' REAL
REAL

(.m “
i '
wiral

REAL
REAL

SPI,SPL,DSP, DDIN
CRT (N10)
TCRT (N10,N5)

DDPC(N10,N100) ,EEYTH(N10,N100)
TDMY (N10,N10,N5) , TEEYTH(N10,N100,N5)
TW(N100,5) , TWMOD (N50, N5)

AKK(N10) ,TAKK(N10,N5) ,AKRR(N10) , TAKR (N10,N5)

DEFL(N100), EYTH(N100), WMOD(N100), TMX(N100,N100)
EY1(N100), EY2(N100)

DPC(N100), EAN1(N100), EAN2(N100)
KXX(N10), KYY(N10),KRX(N10), KRY(N10)
TDDPC(N10,N100,N5)
SHAFT_WEIGHT (NSTAT SIZE),TOTAL_WEIGHT, W(NSTAT SIZE)
EXTERNAL_WEIGHT (NSTAT SIZE), WEIGHT STAT (NSTAT SIZE)
DOUT (NSTAT_SIZE) ,DIN(NSTAT SIZE)

ITRANS (NSTAT SIZE) , IPOLAR(NSTAT SIZE)

DX (NSTAT_SIZE),RO(NSTAT SIZE)

EI (NSTAT_SIZE), INERTIA(NSTAT SIZE)

EM (NSTAT SIZE)

STIF_BEAR (NROT SIZE,N10,6,6)

DAMP_BEAR (NROT_SIZE,N10,6,6)

STIF2 (NROT_SIZE,N10,6,6), STIFA(NROT SIZE,N10,6,6)
DAMP2 (NROT_SIZE,N10,6,6)

?’%****************}c****************************************C

- REAL
REAL
REAL
REAL
REAL
REAL
REAL

e
i

(i

WJ (NSTAT_SIZE),GJ (NSTAT SIZE)
GGO (NSTAT SIZE),TK(NSTAT SIZE)

AT (N5,N5) '

FFR(N10) ,FV(N100,N10),TV(N100,N10) ,WF(N100,N100)
FR(N10,N5) ,FFV(N10,N100,N5)

ZF (N10,N5),ZFV(N10,N100,N5)

SP1,SP2,SP3 ,

kkkkkkkkkkhkkkhkhhhhkhkkkkk kb k kA hh kA khh kb kA hhhkhkkkk kXA XXX ARRR*C
C** FOR SYSTEM NATURAL FREQ. CALCULATIONS khkkhkkkkkhhkkhhkkkkC

Hi

= REAL

REAL AK,AKR, STIF_AV(N10,N10,4,4)

FMODE (N10,N13,4), SBARK, SBARC
]



REAL KBAR(N10,N10),CBAR(N10,N10)

REAL K2BAR(N10,N10),C2BAR(N10,N10)

REAL AGLOB(10,24,24),ASUPER(N100,N100)
= INTEGER NCON_BEAR(N10,N10,N10,N10)

Chhdkhkhhkdhkhhhhhkhhhhhhhdhhkk INPUT DATA khkkhhhhhhkhkhkhhhhhhkkkrhkkhkkkkC
ThkkkkkhkkhkkhkhhkhkhhhhdkhhhhhhhkhkdhhkhhkhkhhkkhkhhhhhrhkhhhhhrhkkkhhkhkkhkrC
Shkkkdkkkhkhhkkhkkkkkkkkkkk® START MAIN BODY *kkkdkhkkkhhhhhkhkhhhhkhkr*C

—

IROT=1
READ (NUNIT(1),*)
READ (NUNIT(1),*) NROT

Ckk*kkkk*** START ENTERING SHAFT AND BEARINGS DATA *kkkkikkdkkhkkkC

10 CONTINUE
READ (NUNIT(1),*)
READ (NUNIT(1),*)
READ (NUNIT(1),*) NSTAT(IROT)
READ (NUNIT(1),*)

- READ (NUNIT(1),*) ( EXTERNAL WEIGHT(J),DX(J),DOUT(J),DIN(J),
+ IPOLAR(J),ITRANS(J),EM(J),R0(J),GGO(J),TK(J), J=1 " NSTAT (IROT) )

READ (NUNIT(1), *)

READ (NUNIT(1),

READ (NUNIT(l),*) NBEAR (IROT)
READ (NUNIT(1),*)

-

DO 20 IBEAR=1,NBEAR(IROT)
READ (NUNIT(1),*)
READ (NUNIT (1), *)

READ (NUNIT(1),*) ( LBEAR(IROT,IBEAR),IBEAR=1,NBEAR(IROT) )

READ (NUNIT(1), *) (( STIF_BEAR(IROT,IBEAR,I,J),J=1,6),1=1,6)

;; READ (NUNIT(1),

READ (NUNIT(1), *)(( DAMP_BEAR (IROT, IBEAR, I,J),J=1,6),I=1,6)

. 20  CONTINUE
; READ (NUNIT(1),*)

- READ (NUNIT(1),*) ;

READ (NUNIT(1),*) NMODE(IROT),SPI, SPL, DSP
READ (NUNIT(1),*)

READ (NUNIT(1),*) NBC

S

cce NMODE (IROT) =3

i}************************************************************C

C*** INITIALIZE MODE SHAPES AND FREQUENCIES %%k kkkkskkkkk*k%C
DO 70 ISPEED=1,NMODE (IROT)
, FREQ (IROT, ISPEED,1)= 0.0
— DO 70 ISTAT=1,NSTAT (IROT)
SHAPE (IROT, ISPEED, ISTAT, 1)
. SHAPE (IROT, ISPEED, ISTAT, 2)
=70  CONTINUE

C*************************************************************C

* * % k k Kk k k k* *k k k k k k k k *k * * k * % * k *k *
—* *  CALCULATE EFFECTIVE INERTIA MOMENT OF ROTORS *
C*  k k k k k * k *k k k k Kk k k k *k k k *k k k *k * * *
F*************************************************************C
_d PI=3.14159
- E=EM (1)

DO 30 I=1,NSTAT(IROT)
: INERTIA(I)= PI*( DOUT(I)**4 - DIN(I)**4 )/64
= EI(I)= E*INERTIA(I)

30 SHAFT_WEIGHT(I)= PI*( DOUT(I)**2 - DIN(I)**2 )*DX(I)*RO(I)/4

W(1)= SHAFT WEIGHT(1)/2.0 + EXTERNAL WEIGHT (1)
L TOTAL WEIGHT= W(1)
TOTAL_LENGTH= DX (1)

DO 40 I=2,NSTAT(IROT)

t



WEIGHT_STAT(I)= SHAFT WEIGHT(I-1)/2.0 + SHAFT WEIGHT(I)/2.0

& + EXTERNAL WEIGHT (I)
W(I)= WEIGHT STAT(I) ;
- TOTAL_WEIGHT= TOTAL_WEIGHT + WEIGHT_ STAT(I)

TOTAL_LENGTH= TOTAL_LENGTH + DX(I)
40  CONTINUE

- IPOLAR(1)= IPOLAR(1) + INERTIA(1)*RO(1)*DX(1)

ITRANS (1)= ITRANS (1) +

& SHAFT WEIGHT(1)*(( DOUT(1)**2.0 + DIN(1)**2.0 )/16.0 +
& (( DX(1)/2.0 )**2.0 )/3.0 )/2.0

DO 50 I=2,NSTAT(IROT)
IPOLAR(I)= IPOLAR(I) + RO(I)*INERTIA(I)*DX(I) +
& INERTIA(I-1)*DX(I-1)*RO(I-1)
ITRANS (I)= ITRANS(I) +
& SHAFT_WEIGHT (I)*( (DOUT(I)**2.0+DIN(I)**2.0)/16.0 +
& (( DX(I)/2.0 )Y**2.0 )/3.0 )/2.0 +
& SHAFT_WEIGHT (I-1)*((DOUT(I-1)**2,0+DIN(I-1)**2.0)/16.0 +
& (( DX(I-1)/2.0 )**2.0 )/3.0 )/2.0
50 CONTINUE
3*******************************************************************C
'ﬁ*************** OUTPUT SHAFT DATA CALCULATIONS ********************C
WRITE (NUNIT(NCOUNT), *)
WRITE (NUNIT(NCOUNT),*) DATA FOR ROTOR /, ’ #’,IROT
- WRITE (NUNIT (NCOUNT), *)
WRITE (NUNIT(NCOUNT),*) / I W(I) DX(I) DOUT(I) DIN(I) INERTIA(I)
1 IPOLAR(I) ITRANS(I) EI(I) '
WRITE (NUNIT (NCOUNT), *)
~ WRITE (NUNIT(NCOUNT),61) ( I,W(I),DX(I),DOUT(I),DIN(I),INERTIA(I),
1 IPOLAR(I),ITRANS(I),EI(I) , I=1,NSTAT(IROT) )
WRITE (NUNIT(NCOUNT),*)
WRITE (NUNIT(NCOUNT),*) ‘TOTAL WEIGHT ’,’/TOTAL LENGTH '’
- WRITE (NUNIT(NCOUNT),*) TOTAL WEIGHT , TOTAL_LENGTH
WRITE (NUNIT(NCOUNT), *)
DO 621 IBEAR=1,NBEAR(IROT)
KXX(IBEAR)= STIF_BEAR(IROT,IBEAR,1,1)
KYY (IBEAR)= STIF_ BEAR(IROT,IBEAR, 3, 3)
KRX (IBEAR)= STIF_ BEAR(IROT, IBEAR,2,2)
KRY (IBEAR)= STIF_ BEAR(IROT,IBEAR,4,4)
- WRITE (NUNIT(NCOUNT), *)/BEARING STIFFNESS IN X- AND Y- DIRECTIONS’
WRITE (NUNIT(NCOUNT),*) / KXX ', ’ KYYy
WRITE (NUNIT(NCOUNT), %) KXX(IBEAR),’ ’,KYY(IBEAR)
i WRITE (NUNIT(NCOUNT),%) ’ AVERAGE SPRING BEARING STIFFNESS ’
= WRITE (NUNIT (NCOUNT),*) 0.5% (KXX(IBEAR) + KYY(IBEAR))
WRITE (NUNIT(NCOUNT),*) ’ AVERAGE ROTATIONAL BEARING STIFFNESS '/
WRITE (NUNIT(NCOUNT),*) 0.5* (KRX(IBEAR) + KRY(IBEAR))
.621 CONTINUE
WRITE (NUNIT(NCOUNT),*) ’ DATA FOR LATERAL MODE CALCULATIONS:’
_ * SPI=INITIAL SPEED,SPL=FINAL SPEED,DSP=SPEED INCREMENT-RPM *C
WRITE (NUNIT(NCOUNT),*) ’‘SPI’,’ SPL ’,’ DSP ?
WRITE (NUNIT(NCOUNT),*) SPI, SPL, DSP
. WRITE (NUNIT(NCOUNT),*) ’ TYPE OF BOUNDARY CONDITIONS
WRITE (NUNIT(NCOUNT),*) NBC

(i

f

Chkkkkkkhkkkkkkkkkkkhkkx PART TWO *rkkkkkkkkhkhhkhkkkhdkkhkkkkkkkkkx(

R T T T Y T T o
ok ok k Kk Kk k k k k k Kk k k *k k k k * *x * * *

C === * CALCULATE ROTOR’S LATERAL MODAL SHAPE *

r * k k k k k k k k k k k Kk k *k k k k * * *k Kk *

_hkkkkhkkhkkkkkkkkkhkkkhhhkhhhkhhkh Rk khkkkkhkkhkhkkhhkhkkhhhkhkkkhk kA kC

whhhkhkkkkhkhkhkhhkhhhhhhhhhhkkhhhhkrkkkrhkhhkkkkkhkkkkhkhkkxxC

C* NC=LOCAL CRITICAL SPEED NO. *C
- NC=1 ;
MA=0

-~ |



MB=0
LN=1
C IN=LN+3
— DDIN=DSP
SPD=SPI
DETP=0.

Lhkikkkkkk START LOOP 290-610 **kkkkkkk*(
290 I=1
J=1
SPSQ=SPD*SPD
ANSP=SPD*0.10471976
ANSP2=ANSP*ANSP
VP=0. i
_ ZMP=0.
EYP=0.
ETHP=1.0
: M=1
00 I=I+1
II=I-1 ,
IF (II-LBEAR(IROT,J)) 330,310,330
10  AR=(KXX(J)+KYY(J))/2.0
— AKR= (KRX (J) +KRY (J)) /2.
AKK (J) =AK
AKRR (J) =AKR
TAKK (J, IROT) =AKK (J)
TAKR (J, IROT) =AKRR (J)
IF (J-NBEAR(IROT)) 320,340,340

- 20 J=J+1

~ GO TO 340

330 AK=0.0
AKR=0.0

40  VP=VP+(W(I-1)*ANSP2/386.4-AK)*EYP
— ZMP=ZMP+AKR*ETHP-ANSP2* (ITRANS (I-1) ) *ETHP/386.4
EY=EYP+DX (I-1) *ETHP+DX (I-1) **2*ZMP/(2.E6*EI (I-1))+
1 DX(I-1)**3*VP/(6.E6*EI(I-1))

ETH=ETHP+DX (I-1)*ZMP/ (1.E6*EI (I-1))+
1 DX (I-1) **2*VP/ (2. E6*EI (I-1))

ZM=ZMP+DX (I-1) *VP

: V=VP
— IF (M.EQ.2) GO TO 350
EY1(I)=EY

EAN1(I)=ETH
, IF (I.GT.NSTAT(IROT)) GO TO 360
— ZMP=2ZM
VP=V
. EYP=EY
_ ETHP=ETH
GO TO 300
750 EY2(I)=EY
EAN2 (I)=ETH
- ZMP=7ZM
VP=V
EYP=EY
ETHP=ETH ‘
- IF (I.GT.NSTAT(IROT)) GO TO 370
GO TO 300 :
60 M=2
ZM1=ZM
VR1=V
J=1
, I=1
_ EYP=1.
ZMP=0.
ETHP=0.
VP=0.



370

180
-490

20
430

40

GO TO 300
DET=VR1*ZM-V*ZM1

IF (ABS(DETP).LT.0.0001) GO TO 420
IF (MA.EQ.1) GO TO 400

IF (ABS(DET).LT.1.) GO TO 450
IF (DETP*DET) 380,420,420
DOLD=DETP

MA=1

IF (ABS(DET).LT.1l.) GO TO 450
IF (DDIN.LT.1.E-6) GO TO 450
DDIN=DDIN/2.

DETPP=DETP

DETP=DET

SPD=SPD-DDIN

GO TO 290

IF (ABS(DET).LT.1.) GO TO 450
IF (DOLD*DET) 390,420,410
CONTINUE

IF (ABS(DET).LT.1.) GO TO 450
IF (DDIN.LT.1.E-6) GO TO 450
DDIN=DDIN/2.

SPD=SPD+DDIN

DETPP=DETP

DETP=DET

GO TO 290

IF (LN-54) 440,440, 430
CONTINUE

LN=1

CONTINUE

LN=LN+1

SPD=SPD+DSP

DDIN=DSP

IF (NC.GT.NMODE (IROT)) GO TO 610
IF (SPD.GT.SPL) GO TO 610
DETPP=DETP

DETP=DET

SSPD=SPD

GO TO 290

MA=0

LN=LN+1

IF (LN-50) 470,470,460
CONTINUE

LN=1

CONTINUE

CRT (NC) =SPD

TCRT (NC, IROT) =CRT (NC)

"***************************************C

€ ul

e

80
490
00

10
520

NC=NC+1

LN=LN+3

EY1(1)=0.

EY2(1)=1.

DTX=0.

I=1 -

IF (LN-50) 490,490,480
CONTINUE

LN=1

CONTINUE

LN=LN+2
DEFL(I)=V*EY1(I)-VR1*EY2 (I)
IF (I.NE.1) GO TO 510
EYTH(I)=V

GO TO 520

EYTH (I)=EAN1(I)*V-EAN2(I)*VR1
DEFA=ABS (DEFL(I))

DMXA=ABS (DTX)

I=I+1



- IF (DEFA-DMXA) 540,540,530
530 DTX=DEFL(I-1)
. 540 IF (I-NSTAT(IROT)) 550,550,560
3550 GO TO 500
560 DO 570 I=1,NSTAT(IROT)
DPC(I)=DEFL(I)/DTX
EYTH (I)=EYTH(I)/DTX
— EEYTH(NC-1,I)=EYTH(I)
570 DDPC(NC-1,I)=DPC(I)
DO 600 I=1,NSTAT(IROT)
LN=LN+1
— IF (LN-54) 590,590,580
580 CONTINUE
LN=1
590  CONTINUE
LN=LN+1
600 CONTINUE
: SPD=SSPD+DSP
- DETP=0.
GO TO 290

.410 CONTINUE
S nkkkkkkkkkkkkk*k END OF THE LOOP 290-610 *kkkkkkkkhhkhhkkkkkkkkkkkC

—~kkkhkkhkhkhkhhkhhhhhkhkkhkhhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhhhhhhhkkhhhhkhhkhhkhhkhkkhkkkxC

DO 6200 IBEAR= 1,NBEAR(IROT)

DO 6201 I=1,6

DO 6201 J=1,6
- STIF2 (IROT,IBEAR,I,J)= STIF BEAR(IROT, IBEAR,I,J)

DAMP2 (IROT, IBEAR,I,J)= DAMP_BEAR(IROT, IBEAR,I,J)

6201 CONTINUE

= 6200 CONTINUE
Chkkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhhkkhhhkhkhkhkkhkhhhkhkhkhkhhkhhkhkkhkhkhkhkhkhkhkhkhkkkkkkkkx(C
A% SUBSTRACTING AVERAGE BEARING STIFFNESS FROM STIFFNESS MATRIX *C
N DO 620 IBEAR=1,NBEAR(IROT)
- STIF_AV(IROT,IBEAR,1,1)=0.5%( STIF_BEAR(IROT,IBEAR,1,1) +

& STIF_BEAR (IROT,IBEAR,3,3)

STIF_AV(IROT,TBEAR,2,2)=0.5%( STIF BEAR(IROT,IBEAR,2,2) +
: & STIF_BEAR (IROT,IBEAR, 4,4 )
- AK= STIF_AV(IROT,IBEAR,1,1)

AKR= STIF AV (IROT,IBEAR,2,2)
- STIF_BEAR(IROT, IBEAR,1,1)=STIF_BEAR(IROT,IBEAR,1,1)-AK
STIF_BEAR(IROT, IBEAR, 3,3)=STIF_BEAR(IROT,IBEAR,3,3)-AK
STIF_BEAR(IROT,IBEAR,2,2)=STIF BEAR(IROT,IBEAR,2,2)-AKR
N STIF_BEAR(IROT,IBEAR,4,4)=STIF_BEAR(IROT,IBEAR,4,4)-AKR
20 CONTINUE
wwkkkkhkkkhkhkhhhkhhkhkhkhhhhkhkhhkhkhhkhkhhkhkhkhhhkhkhkhhhhkhkkdhhkhkhhhkhkkdhhhkhkhthkiddkkC
C* FOR THE TRANSIENT PART OF THE PROGRAM *C

= DO 6210 IBEAR= 1,NBEAR(IROT)
= DO 6211 I=1,4
DO 6211 J=1,4
— STIFA(IROT,IBEAR,T,J)= STIF_AV(IROT,IBEAR,I,J)
6211 CONTINUE
T 6210 CONTINUE

DO 6220 IBEAR= 1,NBEAR(IROT)
—_ DO 6221 I=5,6
DO 6221 J=5,6
STIFA(IROT, IBEAR, I J)— 0.0
T'6221 CONTINUE
<6220 CONTINUE
C****************************************************************C
- AK=0.0
- AKR=0.0
’ DO 60 IBEAR=1,NBEAR(IROT)
WRITE (NUNIT(NCOUNT),*) ‘STIFFNESS MATRIX FOR /,IBEAR,’ BEARING’
WRITE (NUNIT (NCOUNT),2)(( STIF2(IROT,IBEAR,I,J).J=1,6),I=1,6)



WRITE (NUNIT (NCOUNT),*)
WRITE (NUNIT(NCOUNT),*) ’DAMPING MATRIX FOR ’,IBEAR,’ BEARING’
s WRITE (NUNIT(NCOUNT),2)(( DAMP2(IROT,IBEAR,I,J),J=1,6),I=1,6)
L 2 FORMAT(2X, 6F12.3 )
60  CONTINUE

:************************************************************C

~** NCS -> NUMBER OF CRITICAL SPEED= NSPEED II=ISPEED
NSPEED= NC-1

'** OUTPUT THE RESULTS OF THE ABOVE CALCULATIONS **%kkkkkkkkkkkkhkC
- DO 650 ISPEED=1,NSPEED
WMOD (ISPEED) =0.
DO 630 ISTAT=1,NSTAT(IROT)
_30  WMOD(ISPEED)=WMOD (ISPEED)+
& ITRANS (ISTAT) *EEYTH (ISPEED, ISTAT) #*2.0 +
& "~ W(ISTAT)*DDPC (ISPEED,ISTAT) **2.0
WMOD ( ISPEED) =WMOD (ISPEED) /386. 4
- TWMOD ( ISPEED, IROT) =WMOD ( ISPEED)

o DO 640 ISTAT=1,NSTAT(IROT)

%% EEYTH - SLOPE OF THE BEAM

- EEYTH (ISPEED, ISTAT)=EEYTH (ISPEED, ISTAT) / (WMOD (ISPEED) **0.5)

C** DDPC - DEFLECTION OF THE BEAM

- DDPC (ISPEED, ISTAT)=DDPC(ISPEED, ISTAT)/ (WMOD(ISPEED) **0.5)

_** REAL LMODE (NROT,NMODE,NSTAT) - LATERAL MODE SHAPES OF THE SYSTEM
LMODE (IROT, ISPEED, ISTAT)= DDPC(ISPEED, ISTAT)

~x%x TEEYTH - SLOPE OF THE BEAM

' SLOPE (IROT, ISPEED, ISTAT)= EEYTH(ISPEED,ISTAT)

~** SHAPE ARRAY KEEPS THE RESULTS OF CALCULATIONS #*%*kkkkkkkkkk*(
SHAPE (IROT, ISPEED, ISTAT, 1)= LMODE (IROT, ISPEED, ISTAT)
SHAPE (IROT, ISPEED, ISTAT,2)= SLOPE(IROT, ISPEED,ISTAT)

~640 CONTINUE
650 CONTINUE

WRITE (NUNIT(NCOUNT-2),*) / OUTPUT DATA '
WRITE (NUNIT(NCOUNT-2),*) ’ LATERAL FREQUENCIES AND MODE
& SHAPES ’
WRITE (NUNIT(NCOUNT-2),*)
WRITE (NUNIT(NCOUNT-2),*) ’ ROTOR ’,’ #’, IROT
WRITE (NUNIT(NCOUNT-2),*) ’/ LATERAL FREQUENCIES '
DO 660 ISPEED=1,NSPEED
WRITE (NUNIT(NCOUNT-2),*)
WRITE (NUNIT(NCOUNT-2),*) ’NO.’,’ FREQUENCY ( HZ )’,
1 ’ MODAL WEIGHT ’
; WRITE (NUNIT(NCOUNT-2),*) ISPEED, CRT(ISPEED)/60.0, WMOD(ISPEED)

()

mwl L]
[

Q
0O

oo

%}**************************************************************C
FREQ (IROT, ISPEED, 1) =CRT (ISPEED)
FREQ (IROT, ISPEED,2 ) =CRT (ISPEED)
WRITE (NUNIT(NCOUNT-2),*)
WRITE (NUNIT(NCOUNT-2),*)
WRITE (NUNIT(NCOUNT-2),*) ’/ MODE SHAPES FOR ROTOR NO.’,IROT
- WRITE (NUNIT(NCOUNT-2),*)’ #STATION DEFLECTION SLOPE '
= WRITE (NUNIT(NCOUNT-2),*)
= DO 660 ISTAT=1,NSTAT(IROT)
WRITE (NUNIT(NCOUNT-2),*) ISTAT,LMODE(IROT,ISPEED,ISTAT),
- & SLOPE (IROT, ISPEED, ISTAT)
660  CONTINUE

WRITE (NUNIT(NCOUNT-2),*)

WRITE (NUNIT(NCOUNT-2),*) ’ CHECK-OUT THE ORTHOGONALITY OF
& THE MODE SHAPES /

WRITE (NUNIT(NCOUNT-2),*) ‘ MODE SHAPES ARE NORMALIZED WITH
& RESPECT TO MASS MATRIX

g

it



WRITE (NUNIT(NCOUNT-2),*)
DO 680 ISPEED=1,NSPEED
, DO 670 JSPEED=1,NSPEED
o TMX (ISPEED, JSPEED) =0. '
DO 670 ISTAT=1,NSTAT(IROT)
TMX (ISPEED, JSPEED) =TMX (ISPEED, JSPEED) +
& W(ISTAT) *LMODE (IROT, ISPEED, ISTAT) *

— & LMODE (IROT,JSPEED, ISTAT) /386.4+
& ITRANS (ISTAT) *SLOPE (IROT, ISPEED, ISTAT) *
& SLOPE (IROT,JSPEED, ISTAT) /386.4

70  CONTINUE
- WRITE (NUNIT(NCOUNT-2),*) ( TMX(ISPEED,JSPEED),JSPEED=1,NSPEED )
A80  CONTINUE

- NCT=NSPEED

“cceccceec NMODE (IROT) =NCT

- NM (IROT) =NCT

-~ WRITE (NUNIT (NCOUNT),*)
WRITE (NUNIT(NCOUNT),*) ‘NUMBER OF FOUND NATURAL FREQUENCIES’
WRITE (NUNIT(NCOUNT),*) NM(IROT)
IF( NMODE(IROT) - NM(IROT) .NE. 0 ) THEN

- WRITE (NUNIT(NCOUNT),*)’THE HIGHER FREQUENCIES AND MODE SHAPES’
WRITE (NUNIT(NCOUNT),*) / WILL BE TAKEN AS ZEROS ’
ENDIF ,

Chrkkkkkhkkkkkkkhkkk* TORSTIONAL PART *kkkkkhhkhkhhkhhkhhhkhkhhkhkhhkhkhkrrrk*C

~ **  N= NSTAT
<~** NM -> NMODE=NSPEED
C kkkdkkkkkkhhkhhhhkhhhkhhkkhkkhkkhhhhhkkhkhkkhkhkhkhkhkhkhkhkhkhhhkkhkkkhkthkkk

= * THIS PROGRAM FOR CALCULATE Z-DIRECTION EIGEN PROBLEM *
khkkhkhkhkhkhdhhhhkkhkkkhhhhhhhhhkhkhkhhdhhhhhhhhkhdkhhkhkhhkhkhkkkdkdkdkhkhhkk

C* NTYPE=1 CORRESPONDS TO TORSIONAL VIBRATION
* NTYPE=2 CORRESPONDS TO Z-DIRECTION ( THRUST ) VIBRATION

e

NTYPE=1
700 CONTINUE
T kk NMODE=1
xk IROT=NROT _
Ch* NE=IROT ;

- NSTATX=NSTAT (IROT) ;

P IF (NTYPE.EQ.1) THEN |,

- DO 710 ISTAT=1,NSTAT (IROT)

GGO (ISTAT)=GGO (ISTAT) *10000000. 0

GJ (ISTAT)=32.0*DX (ISTAT)/ (PI*GGO (ISTAT) *
& (DOUT (ISTAT) **4~DIN (ISTAT) **4) )
WJ (ISTAT)=PI*RO (ISTAT) *DX (ISTAT) *

N & (DOUT (ISTAT) **4-DIN(ISTAT) **4) /32.0/386.4+
= & ITRANS (ISTAT)/386.4
©«710 CONTINUE .
ENDIF
. IF (NTYPE.EQ.2) THEN
= DO 720 ISTAT=1,NSTAT(IROT)
= TK(ISTAT)=0.0

EM(ISTAT)=EM(ISTAT) *1000000. 0
= GJ (ISTAT)= 4.0%DX(ISTAT)/(PI*EM(ISTAT) *
- & (DOUT (ISTAT) **2~DIN (ISTAT) **2))
WJ (ISTAT)= PI*RO(ISTAT)*DX(ISTAT) *
(DOUT (ISTAT) **2-DIN(ISTAT) **2) /4.0/386.4+
EXTERNAL WEIGHT (ISTAT)/386.4

&

&

~720 CONTINUE
ENDIF

e

E R AR AAAARARRRR AR RN R ARAkE*C



— MCY=0
ST=20.0
A01=0.0
730 AO1=AO1+ST
- AO2=AO1+ST
C*************************************C
CALL SBC(NSTATX,NBC,AO1,B1,GJ,WJ, TK)
CALL SBC(NSTATX,NBC,A02,B2,GJ,WJ,TK)
_C*************************************C
IF((B1*B2).LE.0.0) GOTO 740
GO TO 730 _
_ 740 MCY=MCY+1 '
IF (MCY.GT.NMODE (IROT)) GOTO 770
Al=A01
.. A2=A02
— 750 IF(ABS(Al-A2).LT.0.1) GOTO 760
AA1=A1+0.618% (A2-Al)
"****************************************C

CALL SBC (NSTATX,NBC,AAl,BB,GJ,WJ,TK)
‘t****************************************c
IF ( (B1*BB) .LE. 0.0 ) THEN
A2=AA1
B2=BB
ELSE
Al=AAl
B1=BB
- ENDIF
GOTO 750
760 FR(MCY,IROT)=0.5% (Al+A2)
IF ( NTYPE .GT. 1 ) ZF(MCY,IROT)=FR(MCY,IROT)
- FFR (MCY) =FR (MCY, IROT) /2. 0/PI
GOTO 730
770 CONTINUE
N1=NSTAT (IROT)+1
- DO 780 IMODE=1,NMODE (IROT)
FV(1,IMODE)=1.0
TV (1, IMODE)=-WJ (1) *FR (IMODE, IROT) **2
- DO 780 ISTAT=2,NSTAT (IROT)
TV (ISTAT, IMODE) =TV (ISTAT-1, IMODE) *( 1.0+
& ( TK(ISTAT)-WJ (ISTAT) *FR (IMODE, IROT) **2) *GJ (ISTAT)
& +FV (ISTAT-1, IMODE) * (TK (ISTAT) ~WJ (ISTAT) *FR (IMODE, IROT) **2
FV (ISTAT, IMODE) =TV (ISTAT-1, IMODE) *GJ (ISTAT) + FV(ISTAT-1,IMODE)
780 CONTINUE
DO 790 IMODE=1, NMODE (IROT)
C0=0.0
DO 800 ISTAT=1,NSTAT(IROT)
800 CO=CO+FV (ISTAT, IMODE) **2*WJ (ISTAT)
. DO 790 ISTAT=1,NSTAT (IROT)
FFV (IMODE, ISTAT, IROT)=FV (ISTAT, IMODE) /SQRT (CO)
SHAPE (IROT, IMODE, ISTAT, 5-NTYPE) =FFV (IMODE, ISTAT, IROT)
IF (NTYPE.NE.1) ZFV(IMODE,ISTAT, IROT)=FFV (IMODE, ISTAT,IROT)
790 CONTINUE
DO 810 ISTAT=1,NSTAT(IROT)
DO 810 IMODE=1,NMODE (IROT)
£ 810 WF (ISTAT,IMODE)=WJ (ISTAT) *FFV (IMODE, ISTAT, IROT)
%7*******************************************************************C
DO 820 IMODE=1,NMODE (IROT)
DO 820 JMODE=1,NMODE (IROT)
AT (IMODE, JMODE)=0.0 .
DO 820 ISTAT=1,NSTAT(IROT)
820 AT (IMODE,JMODE)=AT (IMODE,JMODE) +

. & WF (ISTAT, JMODE) *FFV (IMODE, ISTAT, IROT)
*******************************************************************C

%********* OUTPUT OF TORSIONAL PART *kkkkkkhhkkhkhkhhkhkhhhkhkkrkhkkkkk*C
Chkkkkkkkkkk*** OUTPUT FOR TORSIONAL VIBRATION **kkkkkkkkkkkkkkkkkkkxC
IF ( NTYPE .EQ. 1 ) THEN
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WRITE ( NUNIT(NCOUNT-1),*) ’/ TORSIONAL MODE SHAPES AND

& FREQUENCIES’

WRITE ( NUNIT(NCOUNT-1),

WRITE ( NUNIT(NCOUNT-1), 1101 ) IROT

uv*************** TORSIONAL FREQUENCY ******************************C
DO 825 IMODE=1,NMODE (IROT)
FREQ ( IROT, TMODE,, S—NTYPE) =FR (IMODE, IROT)

825 CONTINUE

WRITE ( NUNIT(NCOUNT-1), ’ MODE SHAPES ’
WRITE ( NUNIT(NCOUNT-1), ( IMODE, IMODE=1,NMODE (IROT) )
WRITE ( NUNIT(NCOUNT-1), ! TORSIONAL FREQUENCY ( HZ ) 7
- WRITE ( NUNIT(NCOUNT-1), ( FREQ(IROT,IMODE,4)/60.0,
& IMODE=1, NMODE (IROT) )
DO 830 ISTAT=1,NSTAT (IROT)
- WRITE ( NUNIT(NCOUNT-1),* ) ISTAT, (SHAPE(IROT,IMODE,ISTAT,4),
& IMODE=1, NMODE (IROT) )
830 CONTINUE
' ENDIF
“L************ OQUTPUT FOR Z-DIRECTION VIBRATION ******************************C
IF ( NTYPE .EQ. 2 ) THEN
WRITE ( NUNIT(NCOUNT-1),*) ’ Z-DIRECTION MODE SHAPES ’
WRITE ( NUNIT(NCOUNT-1),2101 ) IROT
TChhkhkhkkhhikkhkkkik Z-DIRECTION FREQUENCY ******************************C
DO 835 IMODE=1,NMODE (IROT)
FREQ (IROT, IMODE,, 5- NTYPE) =ZF (IMODE, IROT)
835 CONTINUE

—

WRITE ( NUNIT(NCOUNT-1),* ) ’ MODE SHAPES ’
WRITE ( NUNIT(NCOUNT-1),* ) ( IMODE, IMODE=1,NMODE(IROT) )
- WRITE ( NUNIT(NCOUNT-1),* ) '’ Z-DIRECTION FREQUENCY ( HZ ) ’
WRITE ( NUNIT(NCOUNT-1),* ) / ’, ( FREQ(IROT,IMODE,3)/60.0,
& IMODE=1, NMODE (IROT) )
= WRITE ( NUNIT(NCOUNT-1),*
= DO 840 ISTAT=1,NSTAT(IROT)
WRITE ( NUNIT(NCOUNT-1),* ) ISTAT, (SHAPE(IROT,IMODE,ISTAT,3),
- & IMODE=1, NMODE (IROT) )
* 840 CONTINUE
’ ENDIF

g;‘_*********************************************************************C
61 FORMAT (I2, 8F8.3

- 1101 FORMAT(’TORSIONAL FREQUENCY AND ORTHONOMAL MODE ** IROT=',I2)
1102 FORMAT(3X, ’IMODE=',I3,30X, 'FREQUENCY=',2F10.3)

%1103 FORMAT(2X,’ ISTAT=',14X,’FV(J,I)=',12X, 'FFV(J,I)’,8X, 'TV=")
1104 FORMAT (2X,I3,8X,G14.6,8X%,F12.6,6X,G12.5)

= 1105 FORMAT (3 (/2X,3F16.8))

£1109 FORMAT (2X,I5,2F13.5)
2101 FORMAT(’Z-DIRECTION FREQUENCY AND ORTHONOMAL MODE #* IROT=’,I2)

_ 2102 FORMAT(3X,’IMODE=’,I3,30X,’FREQUENCY=',F10.3)

72103 FORMAT(2X,’ ISTAT=',14X,’ZV(J,I)=',12X,'ZFV(J,I)’,8X, 'FZ=")

-2109 FORMAT (2X,I5,F13.5,2E15.8)

-~** CARD FOR THE END OF THE TORSIONAL AND Z-DIRECTION PART **C
o NTYPE= NTYPE + 1
-~ IF ( NTYPE-1 .EQ. 1 ) GOTO 700

: kkkkkkkkkkkkkkkkkk* CARD FOR THE END OF THE SUBROUTINE **kkkkkkkxx(

Cokkkkkkhkkkhkkkkhkkhkhhhh kA hkkhhkkkkkkkkkhkhhkkkkkkkkkkhhkkrkkkkkkkkdd kO

T* CHECK IF THERE ARE MORE ROTORS TO CALCULATE THE MODE SHAPES *#*#**C
IROT=IROT+1

IF ( IROT .LE. NROT ) GOTO 10
o kkkkkkkhkkhkkkhhkhkkhhhhkhhkhhkhhhhhhhkhkhkhhhhkhhhkhhhhhkhhkhkhhkhhkkhkkkhkhkkkkkkkC

ChhhkhhkkhhhkkhhhhhkhhkhhhhhhkikhhhhhhhrhrhhkhhrhhkrhhrhhkhkhkhkhkhkkkkkxC
~kkkikkk* INITIALIZATION NCON BEAR TABLE ***kkkkkkhkhkhkhkkhkkhkkkhkkrxC

(.



— DO 201 IROT=1,NROT :
DO 201 IBEAR=1,NBEAR(IROT)
DO 201 JROT=1,NROT
- DO 201 JBEAR=1,NBEAR(JROT)
- NCON_BEAR(IROT, IBEAR,JROT,JBEAR) =0
201 CONTINUE

Yhkhkkhhkhkhkhkhhhhkhkhkhkhkhhhkhkhkhhhkhhhhkkrkhkkkhkkkhkhkhkkk*(

C* INPUT FOR BEAR CONNECTIONS *kkkkkkkkkk**C
Nkkkkkkhkhhkhkhkhkkhhhkhkhkkhkhhhhhhkkhkhkkhkhkhkhkhhhkkkk(C
READ (NUNIT(1),*)
- READ (NUNIT(1),*) JCHECK4
C* JCHECK4 IS AN INTEGER SHOWING THE NUMBER OF LINES IN A BEARING CONNECTION TAB
"E. ‘
~ 1% THE BEARING CONNECTION TABLE IS IN THE FORM:
“C* IROT IBEAR JROT JBEAR ITYPE_CON

C* IROT = I-TH ROTOR INDEX

:* TIBEAR - I-TH BEARING OF I-TH ROTOR INDEX
:* JROT -~ J-TH ROTOR INDEX

T#* JBEAR - J~TH BEARING OF J-TH ROTOR INDEX

C* ITYPE CON - TYPE OF CONNECTION BETWEEN (IROT,IBEAR) AND (JROTOR,JBEAR)
- % IF ITYPE_CON =0 THEN BEARING IS CONNECTED TO THE GROUND,AND
->* THERE IS NO CONNECTION TO ANOTHER BEARING OR TO CASING.
Cc* IF ITYPE_CON !=0 IT SHOWS THE TYPE OF BEARING STIFFNESS USED
n* IN THE CALCULATION OF THE BEARING FORCE BETWEEN (IROT,IBEAR) AND (JROTOR,JBEA
).
—* THE TYPE OF BEARING STIFFNESS IS THE NUMBER OF THE BEARING STIFFNESS TABLE.
- WRITE (NUNIT (NCOUNT),*)
WRITE (NUNIT(NCOUNT),*) ’ BEARINGS CONNECTION TABLE ’
- WRITE (NUNIT(NCOUNT),*) ’ IROT IBEAR JROT JBEAR
& ITYPE_CON ’

IF( JCHECK4 .EQ. 0 ) THEN

WRITE (NUNIT(NCOUNT), *)/ ALL BEARINGS ARE CONNECTED TO
: & GROUND’

= ENDIF N

F
Lo

(o

DO 203 JJ=1,JCHECK4

.7* IROT,IBEAR CONNECTED TO JROT,JBEAR, TYPE OF CONNECTION
Ei READ (NUNIT(1),*) IROT,IBEAR,JROT,JBEAR,

— & ITYPE_CON

NCON_BEAR (IROT, IBEAR, JROT, JBEAR) =ITYPE_CON
NCON_BEAR (JROT, JBEAR, IROT, IBEAR) =ITYPE_CON

(-

WRITE (NUNIT(NCOUNT),*) IROT,’ ’,IBEAR,’ ’,JROT,’ ’,JBEAR,’ ’,
) & ITYPE_CON
£ WRITE (NUNIT(NCOUNT),*)
L203 CONTINUE

€ IF( NSWITCH(1) .EQ. 0 ) GOTO 1000

iﬂ*******************************************************************C
Chikkkkkkkkkkkkkkkkkkkkkkx END OF THE MAIN BODY OF LAT *kkkkkkkkkhkkk*(
CkkEKK kA Kk hhhhkkhkhhhhkhhhkhkkhhhhhhhhkhhhhkhhhhhhhhhhhhhhhkhhkhkkhkkkh*k*C
E* WE JUST FOUND ABOVE THE PLANAR UNDAMPED NATURAL FREQUENCIES AND *C
?4 MODE SHAPES.NOW WE PROCEED FOR THE CALCULATIONS OF THE DAMPED *C

MODE SHAPES AND FREQUENCIES WHICH ARE NEEDED FOR THE STABILITY *C
5} ANALYSIS OF THE PROBLEM.HERE WE JUST CALCULATE A GLOBAL MATRIX *C
E* FOR THE EIGENVALUE PROBLEM.USING THIS GLOBAL MATRIX YOU CAN FIND #*C

C* THE EIGENVALUES AND MODE SHAPES BY ANY OTHER STANDART PROGRAM. *C
£ * THIS PART IS ADDED TO CREATE A GLOBAL MATRIX FOR THE EIGENVALUE *C
£* SOLVER PROGRAM. *C

Thhkkhhkhkhkhkhhkhhhhhhkhhkkhhhkhhhkhhhhkhkhhkhkhhkhhkhhkhkhhkhhkhhkhkhhkkhhhkhhkhhkhkhkhkhhkkhkhx

DO 950 IROT=1,NROT
NSPEED= NMODE (IROT)

L



DO 9211 I=1,NSPEED
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911

901

920

DO 911 J=1,NSPEED
KBAR(I,J)=0.0
CBAR(I,J)=0.0
CONTINUE

DO 900 IBEAR=1,NBEAR(IROT)

ISTAT= LBEAR(IROT, IBEAR)

DO 901 ISPEED=1,NSPEED

FMODE (IROT, ISPEED, 1)= SHAPE (IROT,ISPEED, ISTAT,1)
FMODE (IROT, ISPEED, 2) = SHAPE (IROT, ISPEED, ISTAT,2)
FMODE (IROT, ISPEED, 3)= FMODE (IROT,ISPEED, 1)

FMODE (IROT, ISPEED, 4)= FMODE (IROT,ISPEED, 2)
CONTINUE

DO 910 ISPEED=1,NSPEED
DO 910 JSPEED=1,NSPEED
SBARK= 0.0

SBARC=
DO 902 2
DO 902 2
SBARK= SBARK +

gHoO

.0
=l,
=1’

& FMODE (IROT,ISPEED,I)*STIF_ BEAR(IROT,IBEAR,I,J)
& *FMODE (IROT,JSPEED,J)

SBARC= SBARC +

& FMODE (IROT, ISPEED,I)*DAMP BEAR(IROT,IBEAR,I,J)
& *FMODE (IROT,JSPEED,J)

CONTINUE
KBAR (ISPEED,JSPEED)= KBAR(ISPEED,JSPEED) + SBARK
CBAR (ISPEED,JSPEED)= CBAR(ISPEED,JSPEED) + SBARC
CONTINUE
CONTINUE

WRITE(56,* ) ((CBAR(I,J),J=1,NSPEED),I=1,NSPEED)

DO 920 I=1,2*NSPEED
DO 920 J=1,2*NSPEED
AGLOB(IROT,I,J)= 0.0
CONTINUE

% FORM IDENTITY MATRIX BLOCK *C
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DO 925 I=1,NSPEED

DO 925 J=NSPEED+1,2*NSPEED

IF( I .EQ. J-NSPEED ) AGLOB(IROT,I,J)= 1.0

CONTINUE

DO 930 I=NSPEED+1, 2*NSPEED

DO 930 J=1,NSPEED

AGLOB(IROT,I,J)= -KBAR(I-NSPEED,J)

IF( J .EQ. I-NSPEED )
AGLOB(IROT,I,J)= AGLOB(IROT,I,J)-
(FREQ(IROT,J,1)/9.554) %*2.0

CONTINUE

DO 935 I=NSPEED+1,2*NSPEED

DO 935 J=NSPEED+1, 2*NSPEED

AGLOB (IROT,I,J)= -CBAR(I-NSPEED,J-NSPEED)

CONTINUE

WRITE (30+IROT, *)’ MATRIX 2*NSPEEDx2*NSPEED ’/
WRITE (30+IROT,*) 2*NSPEED, 2*NSPEED 7
WRITE (30+IROT,*)’ GLOBAL MATRIX FOR IROT ’,IROT

WRITE (30+IROT, 940)
( (AGLOB (IROT,I,J),J=1,2*NSPEED) ,I=1, 2*NSPEED)
FORMAT( 6(G11.3,1X) )

CONTINUE



;t***************************************************************C

Ch*k*k** START CALCULATIONS SUPER-GLOBAL MATRIX *k*kkkkkkkkkk*C
:;***************************************************************C
- DO 921 I=1,2*NSPEED*NROT
- DO 921 J=1,2*NSPEED*NROT

ASUPER(I,J)= 0.0
921 CONTINUE

DO 952 IROT=1,NROT
DO 952 I=1,2*NSPEED
DO 952 J=1,2*NSPEED
- II= (IROT-1)*2*NSPEED + I
JJ= (IROT-1)+*2*NSPEED + J
ASUPER(II,JJ)= AGLOB(IROT,I,J)
952 CONTINUE

DO 955 IROT=1,NROT
DO 956 JROT=1,NROT
IF( IROT .EQ. JROT ) GOTO 956

‘2********************************C

- IF( NMODE(IROT) - NMODE(JROT) .NE. O ) THEN
WRITE (NUNIT (NCOUNT), *) ‘WARNING:’, IROT ,’AND ’/,JROT,
& / HAVE DIFFERENT NUMBER OF MODES ’

= WRITE (NUNIT (NCOUNT), *) ‘A-SUPER WILL NOT BE CALCULATED ’

- WRITE (NUNIT (NCOUNT), *) /CHANGE NUMBER OF MODE SHAPES ’
STOP

> ENDIF

DoikkkhhkhkkhkhhkhhhkkkkkhkhkhkkkkkkkkkxC

(

DO 958 I=1,NSPEED
DO 958 J=1,NSPEED
K2BAR(I,J)=0.0
C2BAR(I,J)=0.0
958 CONTINUE

nee
[3NNEE

‘t

!M

!

i

DO 957 IBEAR= 1,NBEAR(IROT)
DO 959 JBEAR= 1,NBEAR(JROT)
IF( NCON_BEAR(IROT,IBEAR,JROT,JBEAR) .NE. 1 ) GOTO 959
NSPEED= NMODE (IROT)
ISTAT= LBEAR(IROT, IBEAR)
JSTAT= LBEAR(JROT,JBEAR)
DO 960 ISPEED=1,NSPEED
FMODE (IROT, ISPEED, 1)= SHAPE (IROT,ISPEED, ISTAT,1)
FMODE (IROT, ISPEED, 2) = SHAPE (IROT,ISPEED, ISTAT,2)
FMODE ( IROT, ISPEED, 3) = FMODE (IROT, ISPEED, 1)
FMODE (IROT, ISPEED, 4)= FMODE (IROT, ISPEED, 2)
FMODE (JROT, ISPEED, 1) = SHAPE (JROT, ISPEED,JSTAT, 1)
FMODE (JROT, ISPEED, 2) = SHAPE (JROT, ISPEED, JSTAT, 2)
FMODE (JROT, ISPEED, 3) = FMODE (JROT, ISPEED, 1)
FMODE (JROT, ISPEED, 4)= FMODE (JROT, ISPEED, 2)

960 CONTINUE
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DO 961 ISPEED=1,NSPEED

DO 961 JSPEED=1,NSPEED

DO 962 I=1,2

SBARK= 0.0

SBARC= 0.0

DO 963 J=1,2

SBARK= SBARK +

& ( STIF BEAR(IROT,IBEAR,I,J)+STIF_AV(IROT,IBEAR,I,J) )

& *FMODE (JROT,JSPEED, J)

SBARC= SBARC + DAMP_BEAR(IROT,IBEAR,I,J)*FMODE(JROT,JSPEED,J)
963 CONTINUE

K2BAR (ISPEED, JSPEED) = K2BAR(ISPEED,JSPEED) +
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& FMODE (IROT,ISPEED, I) *SBARK
C2BAR (ISPEED,JSPEED)= C2BAR(ISPEED,JSPEED) +
& FMODE (IROT,ISPEED, I) *SBARC

' ‘962 CONTINUE
— 961 CONTINUE
959 CONTINUE
~ 957 CONTINUE
CkkkkC
_ DO 964 I=IROT*2*NSPEED, IROT*2*NSPEED+NSPEED-1
DO 964 J=JROT*2*NSPEED, JROT*2*NSPEED+NSPEED-1
ASUPER (I-NSPEED+1,J-NSPEED+1) =

& C2BAR (I-IROT*2*NSPEED+1,J-JROT*2*NSPEED+1)
“ ASUPER (I-NSPEED+1,J-2*NSPEED+1) =

& K2BAR (I-IROT*2*NSPEED+1,J~JROT*2*NSPEED+1)
: 964 CONTINUE

956 CONTINUE ‘
955 CONTINUE

- WRITE (40, *)’ MATRIX 2*NROT*NSPEEDx2*NROT*NSPEED ’

WRITE(40,*) 2*NROT*NSPEED, 2*NROT*NSPEED
: WRITE (40, *)’ GLOBAL MATRIX FOR NROT ’,NROT
- WRITE (40,967)
_ & ((ASUPER(I,J),J=1,2*NROT*NSPEED), I=1,2*NROT*NSPEED)
967 FORMAT( 6(G10.3,1X) )
-~ 1000 CONTINUE
. RETURN
b END
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SUBROUTINE SBC(NSTATX,NBC,OM,A,GJ,WJ, TK)

khkkkkhhkhhkhkhkhhkhkkhhkhkkhkhkhkhkhkkhkhkhkhkhkhhhkkhhhhkhhkhkhhkdkhkhkkhkhkhkhkkhthkhhkkhkhhikk

%

THIS IS TO SET BOUNDARY CONDITIONS FOR MATRIX TRANSFORM METHOD

*

khkhkkkhkhkkhkhkhkkhhkhhkhkhkhhkhhhkhkkhhhhhkhkhkdhhkhkhkkhkkhkhkhhkkkkhkhkhkkhkkhkkhkkhkkhkkhkhkhkkk

INTEGER NBC

REAL D(2,2),B(2,2),C(2,2)

REAL GJ (NSTATX) ,WJ (NSTATX), TK(NSTATX)
C(2,2)=1.0
B(l1,1)=1.0
B(1,2)=0.0
B(2,1)=0.0
B(2,2)=1.0

DO 20 I=1,NSTATX
C(1,1)=1.0+(TK(I)-WJ(I)*OM**2)*GJ(I)
C(1,2)=TK(I) -WJI(I)*OM*%*2
C(2,1)=1.0*GJ(I)
D(1,1)=C(1,1)*B(1,1)+C(1,2)*B(2,1)
D(1,2)=C(1,1)*B(1,2)+C(1,2)*B(2,2)
D(2,1)=C(2,1)*B(1,1)+C(2,2)*B(2,1)
D(2,2)=C(2,1)*B(1,2)+C(2,2)*B(2,2)
B(1,1)=D(1,1)

B(1,2)=D(1,2)

B(2,1)=D(2,1)

B(2,2)=D(2,2)

CONTINUE
NBC=2 .
FREE------—-- FIXED -> NBC=1
IF( NBC .EQ. 1 ) A=B(2,2)
FREE-~————==~ FREE -> NBC=2

IF( NBC .EQ. 2 ) A=B(1,2)



., FIXED-=—====m FIXED -> NBC=3
IF( NBC .EQ. 3 ) A=B(2,1)

3 FIXED=~=mm=—m FREE -> NBC=4
IF( NBC .EQ. 4 ) A=B(1,1)
- RETURN
END

) :*******************************************************************C
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